thliang01 commited on
Commit
d8543ab
1 Parent(s): 721f967

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 192.10 +/- 40.31
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5fc46cd310>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5fc46cd3a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5fc46cd430>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5fc46cd4c0>", "_build": "<function ActorCriticPolicy._build at 0x7f5fc46cd550>", "forward": "<function ActorCriticPolicy.forward at 0x7f5fc46cd5e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5fc46cd670>", "_predict": "<function ActorCriticPolicy._predict at 0x7f5fc46cd700>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5fc46cd790>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5fc46cd820>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5fc46cd8b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f5fc46cc210>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670244767214457908, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJorCDy5WL8+lmmOPVSoCr5/ig284XUbvQAAAAAAAAAAABU1Pa6HhrjFFj47q3Y+th91nbuavWK6AACAPwAAgD9AEM69pCAVuVVPlLsRvpi1UEy3O9U1szoAAIA/AACAP4CQBz20Y7A9zhHBPfZ3/b10QBA96EDRPQAAAAAAAAAAmmFlPVx3NLqE1sW7+QAYOPWTF7tWNye3AACAPwAAgD8AM0q+VoSDP0xAwb6+z4m+F34rvr85Mb4AAAAAAAAAAJqVtjz2JCS6YD5auVONG7THzpa6W6Z3OAAAgD8AAIA/M9rkPU62uz0f8ao9UTQ7vo0Vuj1HhKg6AAAAAAAAAAANL6g91yMxuUS6yTpVLxE02o3vuyBC87kAAIA/AACAPxpwcj7TbkM/E/tYvsS9eb7o+8G9SnZ9PQAAAAAAAAAADeuUPY/ORLp5Xb67tE2ZtevMY7rcfgc1AACAPwAAgD8zz9w7e1aJupIv0rvUca84ElIAuah/9DkAAIA/AACAPzPjoTuyMrU/LnvdPTUPN7xG4Se8Vl2PvQAAAAAAAAAA5lvNPWbilz9HYB0+GlSxvvX9NT7+GxI8AAAAAAAAAAAmMai9yxEPP1ON/D2uUH2+fAUePJUbszwAAAAAAAAAAM1xdb1si8m7yLPwPF1MhT3MpSY9+F3VPAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIMe4G0VriW0CUhpRSlIwBbJRN6AOMAXSUR0B88xrftQbddX2UKGgGaAloD0MIQzwSL0/ZYUCUhpRSlGgVTegDaBZHQHz1kq6OHWV1fZQoaAZoCWgPQwh+p8mMt5USwJSGlFKUaBVNEAFoFkdAfQkB6a9bo3V9lChoBmgJaA9DCFmIDoEjA1tAlIaUUpRoFU3oA2gWR0B9HupvP1L8dX2UKGgGaAloD0MIgjy7fOvBXECUhpRSlGgVTegDaBZHQH0zWPYFqzt1fZQoaAZoCWgPQwj6z5off7FnQJSGlFKUaBVNfQFoFkdAfTQkCFK02XV9lChoBmgJaA9DCF+3CIz1B2FAlIaUUpRoFU3oA2gWR0B9Yl6Rhc7hdX2UKGgGaAloD0MIkdRCyeROW0CUhpRSlGgVTegDaBZHQH1zdTcZccF1fZQoaAZoCWgPQwieKAmJtBNaQJSGlFKUaBVN6ANoFkdAfYB7f51vEXV9lChoBmgJaA9DCNKL2v2qCmJAlIaUUpRoFU3oA2gWR0B9jBHe7+UAdX2UKGgGaAloD0MIjbW/s72ZZECUhpRSlGgVTegDaBZHQH2VmFnIyTJ1fZQoaAZoCWgPQwjt8q0P62hhQJSGlFKUaBVN6ANoFkdAfZkGKQ7tA3V9lChoBmgJaA9DCP+WAPxTvVpAlIaUUpRoFU3oA2gWR0B9oXgk1MufdX2UKGgGaAloD0MIyvs4mqPZYUCUhpRSlGgVTegDaBZHQH22j/ZM+Nd1fZQoaAZoCWgPQwgpPGh2XVtgQJSGlFKUaBVN6ANoFkdAfhz336AOKHV9lChoBmgJaA9DCDTaqiQyqmVAlIaUUpRoFU3oA2gWR0B+HRFG5MDfdX2UKGgGaAloD0MI0CozpfW5WECUhpRSlGgVTegDaBZHQH5EyMLncL11fZQoaAZoCWgPQwiJeVbSigVgQJSGlFKUaBVN6ANoFkdAfkdhUipvP3V9lChoBmgJaA9DCF6iemtgAGJAlIaUUpRoFU3oA2gWR0B+Wi7rcCYDdX2UKGgGaAloD0MIvvVhvdHSYkCUhpRSlGgVTegDaBZHQH5tMkhRqGl1fZQoaAZoCWgPQwgpWrkXmG5ZQJSGlFKUaBVN6ANoFkdAfn9r1dxAB3V9lChoBmgJaA9DCOAruvWa011AlIaUUpRoFU3oA2gWR0B+gBaiblRxdX2UKGgGaAloD0MITfVk/lH2ZUCUhpRSlGgVTegDaBZHQH6mKNuLrHF1fZQoaAZoCWgPQwi688Rztg1cQJSGlFKUaBVN6ANoFkdAfrP35eqrBHV9lChoBmgJaA9DCJPkub4PZ0JAlIaUUpRoFU0LAWgWR0B+vMeLehwmdX2UKGgGaAloD0MIR3GOOrqsYkCUhpRSlGgVTegDaBZHQH6+slsxfv51fZQoaAZoCWgPQwilETP7PP9VQJSGlFKUaBVN6ANoFkdAfshwXqJMx3V9lChoBmgJaA9DCMO7XMR3BVlAlIaUUpRoFU3oA2gWR0B+0IRQJokBdX2UKGgGaAloD0MIDvW7sDUSU0CUhpRSlGgVTegDaBZHQH7TT8UEgW91fZQoaAZoCWgPQwiARunSv/pZQJSGlFKUaBVN6ANoFkdAftp/4Irvs3V9lChoBmgJaA9DCKWGNgAb0V5AlIaUUpRoFU3oA2gWR0B+7I3uNPxhdX2UKGgGaAloD0MIjrCoiNPxLkCUhpRSlGgVTRwBaBZHQH7xzbeuV5d1fZQoaAZoCWgPQwir6Xqi6zJjQJSGlFKUaBVN6ANoFkdAf05Fh5PdmHV9lChoBmgJaA9DCL5MFCF1WF5AlIaUUpRoFU3oA2gWR0B/Tk4gieNDdX2UKGgGaAloD0MI2e2zykyIWUCUhpRSlGgVTegDaBZHQH9zybc45tF1fZQoaAZoCWgPQwgf2zLgLOlaQJSGlFKUaBVN6ANoFkdAf3Zf1Hvtt3V9lChoBmgJaA9DCAW/DTFePUpAlIaUUpRoFU3oA2gWR0B/iYIdELH/dX2UKGgGaAloD0MIYAK37ubiYkCUhpRSlGgVTegDaBZHQH+eTjFQ2uR1fZQoaAZoCWgPQwgjvD0IAf1gQJSGlFKUaBVN6ANoFkdAf7GUiY9gW3V9lChoBmgJaA9DCBXKwtdXAGBAlIaUUpRoFU3oA2gWR0B/3WbkOqecdX2UKGgGaAloD0MIqWxYU9nXY0CUhpRSlGgVTegDaBZHQH/267yxzJZ1fZQoaAZoCWgPQwgtYAK37q1YQJSGlFKUaBVN6ANoFkdAf/kQgcLjP3V9lChoBmgJaA9DCIffTbfsDVpAlIaUUpRoFU3oA2gWR0CAAY8CgbqAdX2UKGgGaAloD0MIdTqQ9dTPXUCUhpRSlGgVTegDaBZHQIAFsFY+0PZ1fZQoaAZoCWgPQwhUbqKW5jFfQJSGlFKUaBVN6ANoFkdAgAdA5q/M4nV9lChoBmgJaA9DCNYZ3xeX9WNAlIaUUpRoFU3oA2gWR0CAC2ioKlYVdX2UKGgGaAloD0MIezGUE+2KYUCUhpRSlGgVTegDaBZHQIAVZPykKu11fZQoaAZoCWgPQwj3IW+5epdiQJSGlFKUaBVN6ANoFkdAgBg0nw5NoXV9lChoBmgJaA9DCLjn+dNGDltAlIaUUpRoFU3oA2gWR0CARt5ckdFOdX2UKGgGaAloD0MIPQ6D+StaXUCUhpRSlGgVTegDaBZHQIBG5ChN/ON1fZQoaAZoCWgPQwjrHW6HBtZhQJSGlFKUaBVN6ANoFkdAgFkFz+3pfXV9lChoBmgJaA9DCGWKOQg6B1tAlIaUUpRoFU3oA2gWR0CAWjhw2l2vdX2UKGgGaAloD0MIesiUD0G2WkCUhpRSlGgVTegDaBZHQIBjam8/Uvx1fZQoaAZoCWgPQwhXCRaHM8xgQJSGlFKUaBVN6ANoFkdAgG1KdpZfUnV9lChoBmgJaA9DCNNnB1xXmV1AlIaUUpRoFU3oA2gWR0CAdsWgOBlMdX2UKGgGaAloD0MIZMxdS8jsX0CUhpRSlGgVTegDaBZHQICMihakhzN1fZQoaAZoCWgPQwi6g9iZQuxgQJSGlFKUaBVN6ANoFkdAgJ0XyRSxaHV9lChoBmgJaA9DCFyufmwS6GJAlIaUUpRoFU3oA2gWR0CAnp9tMwlCdX2UKGgGaAloD0MI9DehEAG6Y0CUhpRSlGgVTegDaBZHQICmLJyQxN91fZQoaAZoCWgPQwh4J58e24deQJSGlFKUaBVN6ANoFkdAgKyyA6Mir3V9lChoBmgJaA9DCI7onnUNdmBAlIaUUpRoFU3oA2gWR0CArvWOp84QdX2UKGgGaAloD0MILudSXFX0ZUCUhpRSlGgVTegDaBZHQIC0Su+yquN1fZQoaAZoCWgPQwgDtRg8TKhhQJSGlFKUaBVN6ANoFkdAgL6zGHYYi3V9lChoBmgJaA9DCOM3hZWKIGNAlIaUUpRoFU3oA2gWR0CAwWp3os7NdX2UKGgGaAloD0MI/DcvTvx1YECUhpRSlGgVTegDaBZHQIDw5Z4fOlh1fZQoaAZoCWgPQwhRhxVu+ZBaQJSGlFKUaBVN6ANoFkdAgPDs8YAKfHV9lChoBmgJaA9DCN4hxQCJSmBAlIaUUpRoFU3oA2gWR0CBA2Ezwc5sdX2UKGgGaAloD0MIBoNr7mg8YECUhpRSlGgVTegDaBZHQIEEqol2Ned1fZQoaAZoCWgPQwiefeVBekNcQJSGlFKUaBVN6ANoFkdAgQ4ExqO94HV9lChoBmgJaA9DCOlEgqlmnV9AlIaUUpRoFU3oA2gWR0CBFwd1dPcjdX2UKGgGaAloD0MITfVk/tFsXUCUhpRSlGgVTegDaBZHQIEfwQWepXJ1fZQoaAZoCWgPQwgsgZTYtdVdQJSGlFKUaBVN6ANoFkdAgTSVc2R7q3V9lChoBmgJaA9DCDRN2H6ywGBAlIaUUpRoFU3oA2gWR0CBQWU3XI2gdX2UKGgGaAloD0MI+YIWEjDFYkCUhpRSlGgVTegDaBZHQIFCX3evZAZ1fZQoaAZoCWgPQwhsmKHxRPRgQJSGlFKUaBVN6ANoFkdAgUc0svqTr3V9lChoBmgJaA9DCCZywRn8pTxAlIaUUpRoFU1eAWgWR0CBSpjWCmMwdX2UKGgGaAloD0MIDypxHWNHYkCUhpRSlGgVTegDaBZHQIFLIpnYg7p1fZQoaAZoCWgPQwjAdjBin+9ZQJSGlFKUaBVN6ANoFkdAgUx6uW8h93V9lChoBmgJaA9DCOBIoMGmEGNAlIaUUpRoFU3oA2gWR0CBT+UahpQDdX2UKGgGaAloD0MIlIYahSS0ZECUhpRSlGgVTegDaBZHQIFYCi48U211fZQoaAZoCWgPQwhCXDl7Z8ZdQJSGlFKUaBVN6ANoFkdAgVp9kJ8fFXV9lChoBmgJaA9DCGvz/6qj4mRAlIaUUpRoFU3oA2gWR0CBYsMiKR+0dX2UKGgGaAloD0MIknajj3k5Y0CUhpRSlGgVTegDaBZHQIFiyElE7XB1fZQoaAZoCWgPQwgAHlGhOs9iQJSGlFKUaBVN6ANoFkdAgZm5OzposnV9lChoBmgJaA9DCK2jqgmiRGJAlIaUUpRoFU3oA2gWR0CBmwIeHSF5dX2UKGgGaAloD0MIZOlDF9SKV0CUhpRSlGgVTegDaBZHQIGka6tknTl1fZQoaAZoCWgPQwjPhZFeVA5iQJSGlFKUaBVN6ANoFkdAga8LRSgoPXV9lChoBmgJaA9DCOc4twn3BmZAlIaUUpRoFU3oA2gWR0CB08o8ZDRddX2UKGgGaAloD0MIh8H8FbL7YUCUhpRSlGgVTegDaBZHQIHjHPcBU711fZQoaAZoCWgPQwhAFqJDYIZkQJSGlFKUaBVN6ANoFkdAgeRppeu3dHV9lChoBmgJaA9DCIxLVdripmBAlIaUUpRoFU3oA2gWR0CB6rk1/DtPdX2UKGgGaAloD0MIx0YgXte0YUCUhpRSlGgVTegDaBZHQIHu/IOpbUx1fZQoaAZoCWgPQwgpXI/C9a9bQJSGlFKUaBVN6ANoFkdAge+qlHjIaXV9lChoBmgJaA9DCJM16iEaXltAlIaUUpRoFU3oA2gWR0CB8Tn9NvfkdX2UKGgGaAloD0MIGF5J8lzHX0CUhpRSlGgVTegDaBZHQIH1NjmSyMV1fZQoaAZoCWgPQwiNRj6v+LBiQJSGlFKUaBVN6ANoFkdAgf8Ktga3qnV9lChoBmgJaA9DCFjnGJC90mJAlIaUUpRoFU3oA2gWR0CCAdIUahpQdX2UKGgGaAloD0MIroGtEqw7YkCUhpRSlGgVTegDaBZHQIIK6sbNr0t1fZQoaAZoCWgPQwiXrmAb8exjQJSGlFKUaBVN6ANoFkdAggrwmu1WsHV9lChoBmgJaA9DCCgqG9ZU5hVAlIaUUpRoFU0ZAWgWR0CCDxF9a2WqdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4cd045a2c7c234f3eae28e0f135a2d9cc913cfaec75f5f4ca651dd51960b19f4
3
+ size 147152
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5fc46cd310>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5fc46cd3a0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5fc46cd430>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5fc46cd4c0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f5fc46cd550>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f5fc46cd5e0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5fc46cd670>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f5fc46cd700>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5fc46cd790>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5fc46cd820>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5fc46cd8b0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f5fc46cc210>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 507904,
46
+ "_total_timesteps": 500000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1670244767214457908,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJorCDy5WL8+lmmOPVSoCr5/ig284XUbvQAAAAAAAAAAABU1Pa6HhrjFFj47q3Y+th91nbuavWK6AACAPwAAgD9AEM69pCAVuVVPlLsRvpi1UEy3O9U1szoAAIA/AACAP4CQBz20Y7A9zhHBPfZ3/b10QBA96EDRPQAAAAAAAAAAmmFlPVx3NLqE1sW7+QAYOPWTF7tWNye3AACAPwAAgD8AM0q+VoSDP0xAwb6+z4m+F34rvr85Mb4AAAAAAAAAAJqVtjz2JCS6YD5auVONG7THzpa6W6Z3OAAAgD8AAIA/M9rkPU62uz0f8ao9UTQ7vo0Vuj1HhKg6AAAAAAAAAAANL6g91yMxuUS6yTpVLxE02o3vuyBC87kAAIA/AACAPxpwcj7TbkM/E/tYvsS9eb7o+8G9SnZ9PQAAAAAAAAAADeuUPY/ORLp5Xb67tE2ZtevMY7rcfgc1AACAPwAAgD8zz9w7e1aJupIv0rvUca84ElIAuah/9DkAAIA/AACAPzPjoTuyMrU/LnvdPTUPN7xG4Se8Vl2PvQAAAAAAAAAA5lvNPWbilz9HYB0+GlSxvvX9NT7+GxI8AAAAAAAAAAAmMai9yxEPP1ON/D2uUH2+fAUePJUbszwAAAAAAAAAAM1xdb1si8m7yLPwPF1MhT3MpSY9+F3VPAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIMe4G0VriW0CUhpRSlIwBbJRN6AOMAXSUR0B88xrftQbddX2UKGgGaAloD0MIQzwSL0/ZYUCUhpRSlGgVTegDaBZHQHz1kq6OHWV1fZQoaAZoCWgPQwh+p8mMt5USwJSGlFKUaBVNEAFoFkdAfQkB6a9bo3V9lChoBmgJaA9DCFmIDoEjA1tAlIaUUpRoFU3oA2gWR0B9HupvP1L8dX2UKGgGaAloD0MIgjy7fOvBXECUhpRSlGgVTegDaBZHQH0zWPYFqzt1fZQoaAZoCWgPQwj6z5off7FnQJSGlFKUaBVNfQFoFkdAfTQkCFK02XV9lChoBmgJaA9DCF+3CIz1B2FAlIaUUpRoFU3oA2gWR0B9Yl6Rhc7hdX2UKGgGaAloD0MIkdRCyeROW0CUhpRSlGgVTegDaBZHQH1zdTcZccF1fZQoaAZoCWgPQwieKAmJtBNaQJSGlFKUaBVN6ANoFkdAfYB7f51vEXV9lChoBmgJaA9DCNKL2v2qCmJAlIaUUpRoFU3oA2gWR0B9jBHe7+UAdX2UKGgGaAloD0MIjbW/s72ZZECUhpRSlGgVTegDaBZHQH2VmFnIyTJ1fZQoaAZoCWgPQwjt8q0P62hhQJSGlFKUaBVN6ANoFkdAfZkGKQ7tA3V9lChoBmgJaA9DCP+WAPxTvVpAlIaUUpRoFU3oA2gWR0B9oXgk1MufdX2UKGgGaAloD0MIyvs4mqPZYUCUhpRSlGgVTegDaBZHQH22j/ZM+Nd1fZQoaAZoCWgPQwgpPGh2XVtgQJSGlFKUaBVN6ANoFkdAfhz336AOKHV9lChoBmgJaA9DCDTaqiQyqmVAlIaUUpRoFU3oA2gWR0B+HRFG5MDfdX2UKGgGaAloD0MI0CozpfW5WECUhpRSlGgVTegDaBZHQH5EyMLncL11fZQoaAZoCWgPQwiJeVbSigVgQJSGlFKUaBVN6ANoFkdAfkdhUipvP3V9lChoBmgJaA9DCF6iemtgAGJAlIaUUpRoFU3oA2gWR0B+Wi7rcCYDdX2UKGgGaAloD0MIvvVhvdHSYkCUhpRSlGgVTegDaBZHQH5tMkhRqGl1fZQoaAZoCWgPQwgpWrkXmG5ZQJSGlFKUaBVN6ANoFkdAfn9r1dxAB3V9lChoBmgJaA9DCOAruvWa011AlIaUUpRoFU3oA2gWR0B+gBaiblRxdX2UKGgGaAloD0MITfVk/lH2ZUCUhpRSlGgVTegDaBZHQH6mKNuLrHF1fZQoaAZoCWgPQwi688Rztg1cQJSGlFKUaBVN6ANoFkdAfrP35eqrBHV9lChoBmgJaA9DCJPkub4PZ0JAlIaUUpRoFU0LAWgWR0B+vMeLehwmdX2UKGgGaAloD0MIR3GOOrqsYkCUhpRSlGgVTegDaBZHQH6+slsxfv51fZQoaAZoCWgPQwilETP7PP9VQJSGlFKUaBVN6ANoFkdAfshwXqJMx3V9lChoBmgJaA9DCMO7XMR3BVlAlIaUUpRoFU3oA2gWR0B+0IRQJokBdX2UKGgGaAloD0MIDvW7sDUSU0CUhpRSlGgVTegDaBZHQH7TT8UEgW91fZQoaAZoCWgPQwiARunSv/pZQJSGlFKUaBVN6ANoFkdAftp/4Irvs3V9lChoBmgJaA9DCKWGNgAb0V5AlIaUUpRoFU3oA2gWR0B+7I3uNPxhdX2UKGgGaAloD0MIjrCoiNPxLkCUhpRSlGgVTRwBaBZHQH7xzbeuV5d1fZQoaAZoCWgPQwir6Xqi6zJjQJSGlFKUaBVN6ANoFkdAf05Fh5PdmHV9lChoBmgJaA9DCL5MFCF1WF5AlIaUUpRoFU3oA2gWR0B/Tk4gieNDdX2UKGgGaAloD0MI2e2zykyIWUCUhpRSlGgVTegDaBZHQH9zybc45tF1fZQoaAZoCWgPQwgf2zLgLOlaQJSGlFKUaBVN6ANoFkdAf3Zf1Hvtt3V9lChoBmgJaA9DCAW/DTFePUpAlIaUUpRoFU3oA2gWR0B/iYIdELH/dX2UKGgGaAloD0MIYAK37ubiYkCUhpRSlGgVTegDaBZHQH+eTjFQ2uR1fZQoaAZoCWgPQwgjvD0IAf1gQJSGlFKUaBVN6ANoFkdAf7GUiY9gW3V9lChoBmgJaA9DCBXKwtdXAGBAlIaUUpRoFU3oA2gWR0B/3WbkOqecdX2UKGgGaAloD0MIqWxYU9nXY0CUhpRSlGgVTegDaBZHQH/267yxzJZ1fZQoaAZoCWgPQwgtYAK37q1YQJSGlFKUaBVN6ANoFkdAf/kQgcLjP3V9lChoBmgJaA9DCIffTbfsDVpAlIaUUpRoFU3oA2gWR0CAAY8CgbqAdX2UKGgGaAloD0MIdTqQ9dTPXUCUhpRSlGgVTegDaBZHQIAFsFY+0PZ1fZQoaAZoCWgPQwhUbqKW5jFfQJSGlFKUaBVN6ANoFkdAgAdA5q/M4nV9lChoBmgJaA9DCNYZ3xeX9WNAlIaUUpRoFU3oA2gWR0CAC2ioKlYVdX2UKGgGaAloD0MIezGUE+2KYUCUhpRSlGgVTegDaBZHQIAVZPykKu11fZQoaAZoCWgPQwj3IW+5epdiQJSGlFKUaBVN6ANoFkdAgBg0nw5NoXV9lChoBmgJaA9DCLjn+dNGDltAlIaUUpRoFU3oA2gWR0CARt5ckdFOdX2UKGgGaAloD0MIPQ6D+StaXUCUhpRSlGgVTegDaBZHQIBG5ChN/ON1fZQoaAZoCWgPQwjrHW6HBtZhQJSGlFKUaBVN6ANoFkdAgFkFz+3pfXV9lChoBmgJaA9DCGWKOQg6B1tAlIaUUpRoFU3oA2gWR0CAWjhw2l2vdX2UKGgGaAloD0MIesiUD0G2WkCUhpRSlGgVTegDaBZHQIBjam8/Uvx1fZQoaAZoCWgPQwhXCRaHM8xgQJSGlFKUaBVN6ANoFkdAgG1KdpZfUnV9lChoBmgJaA9DCNNnB1xXmV1AlIaUUpRoFU3oA2gWR0CAdsWgOBlMdX2UKGgGaAloD0MIZMxdS8jsX0CUhpRSlGgVTegDaBZHQICMihakhzN1fZQoaAZoCWgPQwi6g9iZQuxgQJSGlFKUaBVN6ANoFkdAgJ0XyRSxaHV9lChoBmgJaA9DCFyufmwS6GJAlIaUUpRoFU3oA2gWR0CAnp9tMwlCdX2UKGgGaAloD0MI9DehEAG6Y0CUhpRSlGgVTegDaBZHQICmLJyQxN91fZQoaAZoCWgPQwh4J58e24deQJSGlFKUaBVN6ANoFkdAgKyyA6Mir3V9lChoBmgJaA9DCI7onnUNdmBAlIaUUpRoFU3oA2gWR0CArvWOp84QdX2UKGgGaAloD0MILudSXFX0ZUCUhpRSlGgVTegDaBZHQIC0Su+yquN1fZQoaAZoCWgPQwgDtRg8TKhhQJSGlFKUaBVN6ANoFkdAgL6zGHYYi3V9lChoBmgJaA9DCOM3hZWKIGNAlIaUUpRoFU3oA2gWR0CAwWp3os7NdX2UKGgGaAloD0MI/DcvTvx1YECUhpRSlGgVTegDaBZHQIDw5Z4fOlh1fZQoaAZoCWgPQwhRhxVu+ZBaQJSGlFKUaBVN6ANoFkdAgPDs8YAKfHV9lChoBmgJaA9DCN4hxQCJSmBAlIaUUpRoFU3oA2gWR0CBA2Ezwc5sdX2UKGgGaAloD0MIBoNr7mg8YECUhpRSlGgVTegDaBZHQIEEqol2Ned1fZQoaAZoCWgPQwiefeVBekNcQJSGlFKUaBVN6ANoFkdAgQ4ExqO94HV9lChoBmgJaA9DCOlEgqlmnV9AlIaUUpRoFU3oA2gWR0CBFwd1dPcjdX2UKGgGaAloD0MITfVk/tFsXUCUhpRSlGgVTegDaBZHQIEfwQWepXJ1fZQoaAZoCWgPQwgsgZTYtdVdQJSGlFKUaBVN6ANoFkdAgTSVc2R7q3V9lChoBmgJaA9DCDRN2H6ywGBAlIaUUpRoFU3oA2gWR0CBQWU3XI2gdX2UKGgGaAloD0MI+YIWEjDFYkCUhpRSlGgVTegDaBZHQIFCX3evZAZ1fZQoaAZoCWgPQwhsmKHxRPRgQJSGlFKUaBVN6ANoFkdAgUc0svqTr3V9lChoBmgJaA9DCCZywRn8pTxAlIaUUpRoFU1eAWgWR0CBSpjWCmMwdX2UKGgGaAloD0MIDypxHWNHYkCUhpRSlGgVTegDaBZHQIFLIpnYg7p1fZQoaAZoCWgPQwjAdjBin+9ZQJSGlFKUaBVN6ANoFkdAgUx6uW8h93V9lChoBmgJaA9DCOBIoMGmEGNAlIaUUpRoFU3oA2gWR0CBT+UahpQDdX2UKGgGaAloD0MIlIYahSS0ZECUhpRSlGgVTegDaBZHQIFYCi48U211fZQoaAZoCWgPQwhCXDl7Z8ZdQJSGlFKUaBVN6ANoFkdAgVp9kJ8fFXV9lChoBmgJaA9DCGvz/6qj4mRAlIaUUpRoFU3oA2gWR0CBYsMiKR+0dX2UKGgGaAloD0MIknajj3k5Y0CUhpRSlGgVTegDaBZHQIFiyElE7XB1fZQoaAZoCWgPQwgAHlGhOs9iQJSGlFKUaBVN6ANoFkdAgZm5OzposnV9lChoBmgJaA9DCK2jqgmiRGJAlIaUUpRoFU3oA2gWR0CBmwIeHSF5dX2UKGgGaAloD0MIZOlDF9SKV0CUhpRSlGgVTegDaBZHQIGka6tknTl1fZQoaAZoCWgPQwjPhZFeVA5iQJSGlFKUaBVN6ANoFkdAga8LRSgoPXV9lChoBmgJaA9DCOc4twn3BmZAlIaUUpRoFU3oA2gWR0CB08o8ZDRddX2UKGgGaAloD0MIh8H8FbL7YUCUhpRSlGgVTegDaBZHQIHjHPcBU711fZQoaAZoCWgPQwhAFqJDYIZkQJSGlFKUaBVN6ANoFkdAgeRppeu3dHV9lChoBmgJaA9DCIxLVdripmBAlIaUUpRoFU3oA2gWR0CB6rk1/DtPdX2UKGgGaAloD0MIx0YgXte0YUCUhpRSlGgVTegDaBZHQIHu/IOpbUx1fZQoaAZoCWgPQwgpXI/C9a9bQJSGlFKUaBVN6ANoFkdAge+qlHjIaXV9lChoBmgJaA9DCJM16iEaXltAlIaUUpRoFU3oA2gWR0CB8Tn9NvfkdX2UKGgGaAloD0MIGF5J8lzHX0CUhpRSlGgVTegDaBZHQIH1NjmSyMV1fZQoaAZoCWgPQwiNRj6v+LBiQJSGlFKUaBVN6ANoFkdAgf8Ktga3qnV9lChoBmgJaA9DCFjnGJC90mJAlIaUUpRoFU3oA2gWR0CCAdIUahpQdX2UKGgGaAloD0MIroGtEqw7YkCUhpRSlGgVTegDaBZHQIIK6sbNr0t1fZQoaAZoCWgPQwiXrmAb8exjQJSGlFKUaBVN6ANoFkdAggrwmu1WsHV9lChoBmgJaA9DCCgqG9ZU5hVAlIaUUpRoFU0ZAWgWR0CCDxF9a2WqdWUu"
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 124,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:28f3286b0388a034d7b9237a0f4802b8d31e4fa1ac1af42a89e298177bdcc547
3
+ size 87865
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:33a84ee4782aa3ea8940f91d81d3e0a2794d47a2cf1ae5e292a2558657a19bf8
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.8.15
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.12.1+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (251 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 192.1011339076695, "std_reward": 40.308433509128385, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-05T13:26:57.347515"}