Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 192.10 +/- 40.31
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5fc46cd310>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5fc46cd3a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5fc46cd430>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5fc46cd4c0>", "_build": "<function ActorCriticPolicy._build at 0x7f5fc46cd550>", "forward": "<function ActorCriticPolicy.forward at 0x7f5fc46cd5e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5fc46cd670>", "_predict": "<function ActorCriticPolicy._predict at 0x7f5fc46cd700>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5fc46cd790>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5fc46cd820>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5fc46cd8b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f5fc46cc210>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670244767214457908, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJorCDy5WL8+lmmOPVSoCr5/ig284XUbvQAAAAAAAAAAABU1Pa6HhrjFFj47q3Y+th91nbuavWK6AACAPwAAgD9AEM69pCAVuVVPlLsRvpi1UEy3O9U1szoAAIA/AACAP4CQBz20Y7A9zhHBPfZ3/b10QBA96EDRPQAAAAAAAAAAmmFlPVx3NLqE1sW7+QAYOPWTF7tWNye3AACAPwAAgD8AM0q+VoSDP0xAwb6+z4m+F34rvr85Mb4AAAAAAAAAAJqVtjz2JCS6YD5auVONG7THzpa6W6Z3OAAAgD8AAIA/M9rkPU62uz0f8ao9UTQ7vo0Vuj1HhKg6AAAAAAAAAAANL6g91yMxuUS6yTpVLxE02o3vuyBC87kAAIA/AACAPxpwcj7TbkM/E/tYvsS9eb7o+8G9SnZ9PQAAAAAAAAAADeuUPY/ORLp5Xb67tE2ZtevMY7rcfgc1AACAPwAAgD8zz9w7e1aJupIv0rvUca84ElIAuah/9DkAAIA/AACAPzPjoTuyMrU/LnvdPTUPN7xG4Se8Vl2PvQAAAAAAAAAA5lvNPWbilz9HYB0+GlSxvvX9NT7+GxI8AAAAAAAAAAAmMai9yxEPP1ON/D2uUH2+fAUePJUbszwAAAAAAAAAAM1xdb1si8m7yLPwPF1MhT3MpSY9+F3VPAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIMe4G0VriW0CUhpRSlIwBbJRN6AOMAXSUR0B88xrftQbddX2UKGgGaAloD0MIQzwSL0/ZYUCUhpRSlGgVTegDaBZHQHz1kq6OHWV1fZQoaAZoCWgPQwh+p8mMt5USwJSGlFKUaBVNEAFoFkdAfQkB6a9bo3V9lChoBmgJaA9DCFmIDoEjA1tAlIaUUpRoFU3oA2gWR0B9HupvP1L8dX2UKGgGaAloD0MIgjy7fOvBXECUhpRSlGgVTegDaBZHQH0zWPYFqzt1fZQoaAZoCWgPQwj6z5off7FnQJSGlFKUaBVNfQFoFkdAfTQkCFK02XV9lChoBmgJaA9DCF+3CIz1B2FAlIaUUpRoFU3oA2gWR0B9Yl6Rhc7hdX2UKGgGaAloD0MIkdRCyeROW0CUhpRSlGgVTegDaBZHQH1zdTcZccF1fZQoaAZoCWgPQwieKAmJtBNaQJSGlFKUaBVN6ANoFkdAfYB7f51vEXV9lChoBmgJaA9DCNKL2v2qCmJAlIaUUpRoFU3oA2gWR0B9jBHe7+UAdX2UKGgGaAloD0MIjbW/s72ZZECUhpRSlGgVTegDaBZHQH2VmFnIyTJ1fZQoaAZoCWgPQwjt8q0P62hhQJSGlFKUaBVN6ANoFkdAfZkGKQ7tA3V9lChoBmgJaA9DCP+WAPxTvVpAlIaUUpRoFU3oA2gWR0B9oXgk1MufdX2UKGgGaAloD0MIyvs4mqPZYUCUhpRSlGgVTegDaBZHQH22j/ZM+Nd1fZQoaAZoCWgPQwgpPGh2XVtgQJSGlFKUaBVN6ANoFkdAfhz336AOKHV9lChoBmgJaA9DCDTaqiQyqmVAlIaUUpRoFU3oA2gWR0B+HRFG5MDfdX2UKGgGaAloD0MI0CozpfW5WECUhpRSlGgVTegDaBZHQH5EyMLncL11fZQoaAZoCWgPQwiJeVbSigVgQJSGlFKUaBVN6ANoFkdAfkdhUipvP3V9lChoBmgJaA9DCF6iemtgAGJAlIaUUpRoFU3oA2gWR0B+Wi7rcCYDdX2UKGgGaAloD0MIvvVhvdHSYkCUhpRSlGgVTegDaBZHQH5tMkhRqGl1fZQoaAZoCWgPQwgpWrkXmG5ZQJSGlFKUaBVN6ANoFkdAfn9r1dxAB3V9lChoBmgJaA9DCOAruvWa011AlIaUUpRoFU3oA2gWR0B+gBaiblRxdX2UKGgGaAloD0MITfVk/lH2ZUCUhpRSlGgVTegDaBZHQH6mKNuLrHF1fZQoaAZoCWgPQwi688Rztg1cQJSGlFKUaBVN6ANoFkdAfrP35eqrBHV9lChoBmgJaA9DCJPkub4PZ0JAlIaUUpRoFU0LAWgWR0B+vMeLehwmdX2UKGgGaAloD0MIR3GOOrqsYkCUhpRSlGgVTegDaBZHQH6+slsxfv51fZQoaAZoCWgPQwilETP7PP9VQJSGlFKUaBVN6ANoFkdAfshwXqJMx3V9lChoBmgJaA9DCMO7XMR3BVlAlIaUUpRoFU3oA2gWR0B+0IRQJokBdX2UKGgGaAloD0MIDvW7sDUSU0CUhpRSlGgVTegDaBZHQH7TT8UEgW91fZQoaAZoCWgPQwiARunSv/pZQJSGlFKUaBVN6ANoFkdAftp/4Irvs3V9lChoBmgJaA9DCKWGNgAb0V5AlIaUUpRoFU3oA2gWR0B+7I3uNPxhdX2UKGgGaAloD0MIjrCoiNPxLkCUhpRSlGgVTRwBaBZHQH7xzbeuV5d1fZQoaAZoCWgPQwir6Xqi6zJjQJSGlFKUaBVN6ANoFkdAf05Fh5PdmHV9lChoBmgJaA9DCL5MFCF1WF5AlIaUUpRoFU3oA2gWR0B/Tk4gieNDdX2UKGgGaAloD0MI2e2zykyIWUCUhpRSlGgVTegDaBZHQH9zybc45tF1fZQoaAZoCWgPQwgf2zLgLOlaQJSGlFKUaBVN6ANoFkdAf3Zf1Hvtt3V9lChoBmgJaA9DCAW/DTFePUpAlIaUUpRoFU3oA2gWR0B/iYIdELH/dX2UKGgGaAloD0MIYAK37ubiYkCUhpRSlGgVTegDaBZHQH+eTjFQ2uR1fZQoaAZoCWgPQwgjvD0IAf1gQJSGlFKUaBVN6ANoFkdAf7GUiY9gW3V9lChoBmgJaA9DCBXKwtdXAGBAlIaUUpRoFU3oA2gWR0B/3WbkOqecdX2UKGgGaAloD0MIqWxYU9nXY0CUhpRSlGgVTegDaBZHQH/267yxzJZ1fZQoaAZoCWgPQwgtYAK37q1YQJSGlFKUaBVN6ANoFkdAf/kQgcLjP3V9lChoBmgJaA9DCIffTbfsDVpAlIaUUpRoFU3oA2gWR0CAAY8CgbqAdX2UKGgGaAloD0MIdTqQ9dTPXUCUhpRSlGgVTegDaBZHQIAFsFY+0PZ1fZQoaAZoCWgPQwhUbqKW5jFfQJSGlFKUaBVN6ANoFkdAgAdA5q/M4nV9lChoBmgJaA9DCNYZ3xeX9WNAlIaUUpRoFU3oA2gWR0CAC2ioKlYVdX2UKGgGaAloD0MIezGUE+2KYUCUhpRSlGgVTegDaBZHQIAVZPykKu11fZQoaAZoCWgPQwj3IW+5epdiQJSGlFKUaBVN6ANoFkdAgBg0nw5NoXV9lChoBmgJaA9DCLjn+dNGDltAlIaUUpRoFU3oA2gWR0CARt5ckdFOdX2UKGgGaAloD0MIPQ6D+StaXUCUhpRSlGgVTegDaBZHQIBG5ChN/ON1fZQoaAZoCWgPQwjrHW6HBtZhQJSGlFKUaBVN6ANoFkdAgFkFz+3pfXV9lChoBmgJaA9DCGWKOQg6B1tAlIaUUpRoFU3oA2gWR0CAWjhw2l2vdX2UKGgGaAloD0MIesiUD0G2WkCUhpRSlGgVTegDaBZHQIBjam8/Uvx1fZQoaAZoCWgPQwhXCRaHM8xgQJSGlFKUaBVN6ANoFkdAgG1KdpZfUnV9lChoBmgJaA9DCNNnB1xXmV1AlIaUUpRoFU3oA2gWR0CAdsWgOBlMdX2UKGgGaAloD0MIZMxdS8jsX0CUhpRSlGgVTegDaBZHQICMihakhzN1fZQoaAZoCWgPQwi6g9iZQuxgQJSGlFKUaBVN6ANoFkdAgJ0XyRSxaHV9lChoBmgJaA9DCFyufmwS6GJAlIaUUpRoFU3oA2gWR0CAnp9tMwlCdX2UKGgGaAloD0MI9DehEAG6Y0CUhpRSlGgVTegDaBZHQICmLJyQxN91fZQoaAZoCWgPQwh4J58e24deQJSGlFKUaBVN6ANoFkdAgKyyA6Mir3V9lChoBmgJaA9DCI7onnUNdmBAlIaUUpRoFU3oA2gWR0CArvWOp84QdX2UKGgGaAloD0MILudSXFX0ZUCUhpRSlGgVTegDaBZHQIC0Su+yquN1fZQoaAZoCWgPQwgDtRg8TKhhQJSGlFKUaBVN6ANoFkdAgL6zGHYYi3V9lChoBmgJaA9DCOM3hZWKIGNAlIaUUpRoFU3oA2gWR0CAwWp3os7NdX2UKGgGaAloD0MI/DcvTvx1YECUhpRSlGgVTegDaBZHQIDw5Z4fOlh1fZQoaAZoCWgPQwhRhxVu+ZBaQJSGlFKUaBVN6ANoFkdAgPDs8YAKfHV9lChoBmgJaA9DCN4hxQCJSmBAlIaUUpRoFU3oA2gWR0CBA2Ezwc5sdX2UKGgGaAloD0MIBoNr7mg8YECUhpRSlGgVTegDaBZHQIEEqol2Ned1fZQoaAZoCWgPQwiefeVBekNcQJSGlFKUaBVN6ANoFkdAgQ4ExqO94HV9lChoBmgJaA9DCOlEgqlmnV9AlIaUUpRoFU3oA2gWR0CBFwd1dPcjdX2UKGgGaAloD0MITfVk/tFsXUCUhpRSlGgVTegDaBZHQIEfwQWepXJ1fZQoaAZoCWgPQwgsgZTYtdVdQJSGlFKUaBVN6ANoFkdAgTSVc2R7q3V9lChoBmgJaA9DCDRN2H6ywGBAlIaUUpRoFU3oA2gWR0CBQWU3XI2gdX2UKGgGaAloD0MI+YIWEjDFYkCUhpRSlGgVTegDaBZHQIFCX3evZAZ1fZQoaAZoCWgPQwhsmKHxRPRgQJSGlFKUaBVN6ANoFkdAgUc0svqTr3V9lChoBmgJaA9DCCZywRn8pTxAlIaUUpRoFU1eAWgWR0CBSpjWCmMwdX2UKGgGaAloD0MIDypxHWNHYkCUhpRSlGgVTegDaBZHQIFLIpnYg7p1fZQoaAZoCWgPQwjAdjBin+9ZQJSGlFKUaBVN6ANoFkdAgUx6uW8h93V9lChoBmgJaA9DCOBIoMGmEGNAlIaUUpRoFU3oA2gWR0CBT+UahpQDdX2UKGgGaAloD0MIlIYahSS0ZECUhpRSlGgVTegDaBZHQIFYCi48U211fZQoaAZoCWgPQwhCXDl7Z8ZdQJSGlFKUaBVN6ANoFkdAgVp9kJ8fFXV9lChoBmgJaA9DCGvz/6qj4mRAlIaUUpRoFU3oA2gWR0CBYsMiKR+0dX2UKGgGaAloD0MIknajj3k5Y0CUhpRSlGgVTegDaBZHQIFiyElE7XB1fZQoaAZoCWgPQwgAHlGhOs9iQJSGlFKUaBVN6ANoFkdAgZm5OzposnV9lChoBmgJaA9DCK2jqgmiRGJAlIaUUpRoFU3oA2gWR0CBmwIeHSF5dX2UKGgGaAloD0MIZOlDF9SKV0CUhpRSlGgVTegDaBZHQIGka6tknTl1fZQoaAZoCWgPQwjPhZFeVA5iQJSGlFKUaBVN6ANoFkdAga8LRSgoPXV9lChoBmgJaA9DCOc4twn3BmZAlIaUUpRoFU3oA2gWR0CB08o8ZDRddX2UKGgGaAloD0MIh8H8FbL7YUCUhpRSlGgVTegDaBZHQIHjHPcBU711fZQoaAZoCWgPQwhAFqJDYIZkQJSGlFKUaBVN6ANoFkdAgeRppeu3dHV9lChoBmgJaA9DCIxLVdripmBAlIaUUpRoFU3oA2gWR0CB6rk1/DtPdX2UKGgGaAloD0MIx0YgXte0YUCUhpRSlGgVTegDaBZHQIHu/IOpbUx1fZQoaAZoCWgPQwgpXI/C9a9bQJSGlFKUaBVN6ANoFkdAge+qlHjIaXV9lChoBmgJaA9DCJM16iEaXltAlIaUUpRoFU3oA2gWR0CB8Tn9NvfkdX2UKGgGaAloD0MIGF5J8lzHX0CUhpRSlGgVTegDaBZHQIH1NjmSyMV1fZQoaAZoCWgPQwiNRj6v+LBiQJSGlFKUaBVN6ANoFkdAgf8Ktga3qnV9lChoBmgJaA9DCFjnGJC90mJAlIaUUpRoFU3oA2gWR0CCAdIUahpQdX2UKGgGaAloD0MIroGtEqw7YkCUhpRSlGgVTegDaBZHQIIK6sbNr0t1fZQoaAZoCWgPQwiXrmAb8exjQJSGlFKUaBVN6ANoFkdAggrwmu1WsHV9lChoBmgJaA9DCCgqG9ZU5hVAlIaUUpRoFU0ZAWgWR0CCDxF9a2WqdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4cd045a2c7c234f3eae28e0f135a2d9cc913cfaec75f5f4ca651dd51960b19f4
|
3 |
+
size 147152
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f5fc46cd310>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5fc46cd3a0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5fc46cd430>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5fc46cd4c0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f5fc46cd550>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f5fc46cd5e0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5fc46cd670>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f5fc46cd700>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5fc46cd790>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5fc46cd820>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5fc46cd8b0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f5fc46cc210>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 507904,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1670244767214457908,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJorCDy5WL8+lmmOPVSoCr5/ig284XUbvQAAAAAAAAAAABU1Pa6HhrjFFj47q3Y+th91nbuavWK6AACAPwAAgD9AEM69pCAVuVVPlLsRvpi1UEy3O9U1szoAAIA/AACAP4CQBz20Y7A9zhHBPfZ3/b10QBA96EDRPQAAAAAAAAAAmmFlPVx3NLqE1sW7+QAYOPWTF7tWNye3AACAPwAAgD8AM0q+VoSDP0xAwb6+z4m+F34rvr85Mb4AAAAAAAAAAJqVtjz2JCS6YD5auVONG7THzpa6W6Z3OAAAgD8AAIA/M9rkPU62uz0f8ao9UTQ7vo0Vuj1HhKg6AAAAAAAAAAANL6g91yMxuUS6yTpVLxE02o3vuyBC87kAAIA/AACAPxpwcj7TbkM/E/tYvsS9eb7o+8G9SnZ9PQAAAAAAAAAADeuUPY/ORLp5Xb67tE2ZtevMY7rcfgc1AACAPwAAgD8zz9w7e1aJupIv0rvUca84ElIAuah/9DkAAIA/AACAPzPjoTuyMrU/LnvdPTUPN7xG4Se8Vl2PvQAAAAAAAAAA5lvNPWbilz9HYB0+GlSxvvX9NT7+GxI8AAAAAAAAAAAmMai9yxEPP1ON/D2uUH2+fAUePJUbszwAAAAAAAAAAM1xdb1si8m7yLPwPF1MhT3MpSY9+F3VPAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIMe4G0VriW0CUhpRSlIwBbJRN6AOMAXSUR0B88xrftQbddX2UKGgGaAloD0MIQzwSL0/ZYUCUhpRSlGgVTegDaBZHQHz1kq6OHWV1fZQoaAZoCWgPQwh+p8mMt5USwJSGlFKUaBVNEAFoFkdAfQkB6a9bo3V9lChoBmgJaA9DCFmIDoEjA1tAlIaUUpRoFU3oA2gWR0B9HupvP1L8dX2UKGgGaAloD0MIgjy7fOvBXECUhpRSlGgVTegDaBZHQH0zWPYFqzt1fZQoaAZoCWgPQwj6z5off7FnQJSGlFKUaBVNfQFoFkdAfTQkCFK02XV9lChoBmgJaA9DCF+3CIz1B2FAlIaUUpRoFU3oA2gWR0B9Yl6Rhc7hdX2UKGgGaAloD0MIkdRCyeROW0CUhpRSlGgVTegDaBZHQH1zdTcZccF1fZQoaAZoCWgPQwieKAmJtBNaQJSGlFKUaBVN6ANoFkdAfYB7f51vEXV9lChoBmgJaA9DCNKL2v2qCmJAlIaUUpRoFU3oA2gWR0B9jBHe7+UAdX2UKGgGaAloD0MIjbW/s72ZZECUhpRSlGgVTegDaBZHQH2VmFnIyTJ1fZQoaAZoCWgPQwjt8q0P62hhQJSGlFKUaBVN6ANoFkdAfZkGKQ7tA3V9lChoBmgJaA9DCP+WAPxTvVpAlIaUUpRoFU3oA2gWR0B9oXgk1MufdX2UKGgGaAloD0MIyvs4mqPZYUCUhpRSlGgVTegDaBZHQH22j/ZM+Nd1fZQoaAZoCWgPQwgpPGh2XVtgQJSGlFKUaBVN6ANoFkdAfhz336AOKHV9lChoBmgJaA9DCDTaqiQyqmVAlIaUUpRoFU3oA2gWR0B+HRFG5MDfdX2UKGgGaAloD0MI0CozpfW5WECUhpRSlGgVTegDaBZHQH5EyMLncL11fZQoaAZoCWgPQwiJeVbSigVgQJSGlFKUaBVN6ANoFkdAfkdhUipvP3V9lChoBmgJaA9DCF6iemtgAGJAlIaUUpRoFU3oA2gWR0B+Wi7rcCYDdX2UKGgGaAloD0MIvvVhvdHSYkCUhpRSlGgVTegDaBZHQH5tMkhRqGl1fZQoaAZoCWgPQwgpWrkXmG5ZQJSGlFKUaBVN6ANoFkdAfn9r1dxAB3V9lChoBmgJaA9DCOAruvWa011AlIaUUpRoFU3oA2gWR0B+gBaiblRxdX2UKGgGaAloD0MITfVk/lH2ZUCUhpRSlGgVTegDaBZHQH6mKNuLrHF1fZQoaAZoCWgPQwi688Rztg1cQJSGlFKUaBVN6ANoFkdAfrP35eqrBHV9lChoBmgJaA9DCJPkub4PZ0JAlIaUUpRoFU0LAWgWR0B+vMeLehwmdX2UKGgGaAloD0MIR3GOOrqsYkCUhpRSlGgVTegDaBZHQH6+slsxfv51fZQoaAZoCWgPQwilETP7PP9VQJSGlFKUaBVN6ANoFkdAfshwXqJMx3V9lChoBmgJaA9DCMO7XMR3BVlAlIaUUpRoFU3oA2gWR0B+0IRQJokBdX2UKGgGaAloD0MIDvW7sDUSU0CUhpRSlGgVTegDaBZHQH7TT8UEgW91fZQoaAZoCWgPQwiARunSv/pZQJSGlFKUaBVN6ANoFkdAftp/4Irvs3V9lChoBmgJaA9DCKWGNgAb0V5AlIaUUpRoFU3oA2gWR0B+7I3uNPxhdX2UKGgGaAloD0MIjrCoiNPxLkCUhpRSlGgVTRwBaBZHQH7xzbeuV5d1fZQoaAZoCWgPQwir6Xqi6zJjQJSGlFKUaBVN6ANoFkdAf05Fh5PdmHV9lChoBmgJaA9DCL5MFCF1WF5AlIaUUpRoFU3oA2gWR0B/Tk4gieNDdX2UKGgGaAloD0MI2e2zykyIWUCUhpRSlGgVTegDaBZHQH9zybc45tF1fZQoaAZoCWgPQwgf2zLgLOlaQJSGlFKUaBVN6ANoFkdAf3Zf1Hvtt3V9lChoBmgJaA9DCAW/DTFePUpAlIaUUpRoFU3oA2gWR0B/iYIdELH/dX2UKGgGaAloD0MIYAK37ubiYkCUhpRSlGgVTegDaBZHQH+eTjFQ2uR1fZQoaAZoCWgPQwgjvD0IAf1gQJSGlFKUaBVN6ANoFkdAf7GUiY9gW3V9lChoBmgJaA9DCBXKwtdXAGBAlIaUUpRoFU3oA2gWR0B/3WbkOqecdX2UKGgGaAloD0MIqWxYU9nXY0CUhpRSlGgVTegDaBZHQH/267yxzJZ1fZQoaAZoCWgPQwgtYAK37q1YQJSGlFKUaBVN6ANoFkdAf/kQgcLjP3V9lChoBmgJaA9DCIffTbfsDVpAlIaUUpRoFU3oA2gWR0CAAY8CgbqAdX2UKGgGaAloD0MIdTqQ9dTPXUCUhpRSlGgVTegDaBZHQIAFsFY+0PZ1fZQoaAZoCWgPQwhUbqKW5jFfQJSGlFKUaBVN6ANoFkdAgAdA5q/M4nV9lChoBmgJaA9DCNYZ3xeX9WNAlIaUUpRoFU3oA2gWR0CAC2ioKlYVdX2UKGgGaAloD0MIezGUE+2KYUCUhpRSlGgVTegDaBZHQIAVZPykKu11fZQoaAZoCWgPQwj3IW+5epdiQJSGlFKUaBVN6ANoFkdAgBg0nw5NoXV9lChoBmgJaA9DCLjn+dNGDltAlIaUUpRoFU3oA2gWR0CARt5ckdFOdX2UKGgGaAloD0MIPQ6D+StaXUCUhpRSlGgVTegDaBZHQIBG5ChN/ON1fZQoaAZoCWgPQwjrHW6HBtZhQJSGlFKUaBVN6ANoFkdAgFkFz+3pfXV9lChoBmgJaA9DCGWKOQg6B1tAlIaUUpRoFU3oA2gWR0CAWjhw2l2vdX2UKGgGaAloD0MIesiUD0G2WkCUhpRSlGgVTegDaBZHQIBjam8/Uvx1fZQoaAZoCWgPQwhXCRaHM8xgQJSGlFKUaBVN6ANoFkdAgG1KdpZfUnV9lChoBmgJaA9DCNNnB1xXmV1AlIaUUpRoFU3oA2gWR0CAdsWgOBlMdX2UKGgGaAloD0MIZMxdS8jsX0CUhpRSlGgVTegDaBZHQICMihakhzN1fZQoaAZoCWgPQwi6g9iZQuxgQJSGlFKUaBVN6ANoFkdAgJ0XyRSxaHV9lChoBmgJaA9DCFyufmwS6GJAlIaUUpRoFU3oA2gWR0CAnp9tMwlCdX2UKGgGaAloD0MI9DehEAG6Y0CUhpRSlGgVTegDaBZHQICmLJyQxN91fZQoaAZoCWgPQwh4J58e24deQJSGlFKUaBVN6ANoFkdAgKyyA6Mir3V9lChoBmgJaA9DCI7onnUNdmBAlIaUUpRoFU3oA2gWR0CArvWOp84QdX2UKGgGaAloD0MILudSXFX0ZUCUhpRSlGgVTegDaBZHQIC0Su+yquN1fZQoaAZoCWgPQwgDtRg8TKhhQJSGlFKUaBVN6ANoFkdAgL6zGHYYi3V9lChoBmgJaA9DCOM3hZWKIGNAlIaUUpRoFU3oA2gWR0CAwWp3os7NdX2UKGgGaAloD0MI/DcvTvx1YECUhpRSlGgVTegDaBZHQIDw5Z4fOlh1fZQoaAZoCWgPQwhRhxVu+ZBaQJSGlFKUaBVN6ANoFkdAgPDs8YAKfHV9lChoBmgJaA9DCN4hxQCJSmBAlIaUUpRoFU3oA2gWR0CBA2Ezwc5sdX2UKGgGaAloD0MIBoNr7mg8YECUhpRSlGgVTegDaBZHQIEEqol2Ned1fZQoaAZoCWgPQwiefeVBekNcQJSGlFKUaBVN6ANoFkdAgQ4ExqO94HV9lChoBmgJaA9DCOlEgqlmnV9AlIaUUpRoFU3oA2gWR0CBFwd1dPcjdX2UKGgGaAloD0MITfVk/tFsXUCUhpRSlGgVTegDaBZHQIEfwQWepXJ1fZQoaAZoCWgPQwgsgZTYtdVdQJSGlFKUaBVN6ANoFkdAgTSVc2R7q3V9lChoBmgJaA9DCDRN2H6ywGBAlIaUUpRoFU3oA2gWR0CBQWU3XI2gdX2UKGgGaAloD0MI+YIWEjDFYkCUhpRSlGgVTegDaBZHQIFCX3evZAZ1fZQoaAZoCWgPQwhsmKHxRPRgQJSGlFKUaBVN6ANoFkdAgUc0svqTr3V9lChoBmgJaA9DCCZywRn8pTxAlIaUUpRoFU1eAWgWR0CBSpjWCmMwdX2UKGgGaAloD0MIDypxHWNHYkCUhpRSlGgVTegDaBZHQIFLIpnYg7p1fZQoaAZoCWgPQwjAdjBin+9ZQJSGlFKUaBVN6ANoFkdAgUx6uW8h93V9lChoBmgJaA9DCOBIoMGmEGNAlIaUUpRoFU3oA2gWR0CBT+UahpQDdX2UKGgGaAloD0MIlIYahSS0ZECUhpRSlGgVTegDaBZHQIFYCi48U211fZQoaAZoCWgPQwhCXDl7Z8ZdQJSGlFKUaBVN6ANoFkdAgVp9kJ8fFXV9lChoBmgJaA9DCGvz/6qj4mRAlIaUUpRoFU3oA2gWR0CBYsMiKR+0dX2UKGgGaAloD0MIknajj3k5Y0CUhpRSlGgVTegDaBZHQIFiyElE7XB1fZQoaAZoCWgPQwgAHlGhOs9iQJSGlFKUaBVN6ANoFkdAgZm5OzposnV9lChoBmgJaA9DCK2jqgmiRGJAlIaUUpRoFU3oA2gWR0CBmwIeHSF5dX2UKGgGaAloD0MIZOlDF9SKV0CUhpRSlGgVTegDaBZHQIGka6tknTl1fZQoaAZoCWgPQwjPhZFeVA5iQJSGlFKUaBVN6ANoFkdAga8LRSgoPXV9lChoBmgJaA9DCOc4twn3BmZAlIaUUpRoFU3oA2gWR0CB08o8ZDRddX2UKGgGaAloD0MIh8H8FbL7YUCUhpRSlGgVTegDaBZHQIHjHPcBU711fZQoaAZoCWgPQwhAFqJDYIZkQJSGlFKUaBVN6ANoFkdAgeRppeu3dHV9lChoBmgJaA9DCIxLVdripmBAlIaUUpRoFU3oA2gWR0CB6rk1/DtPdX2UKGgGaAloD0MIx0YgXte0YUCUhpRSlGgVTegDaBZHQIHu/IOpbUx1fZQoaAZoCWgPQwgpXI/C9a9bQJSGlFKUaBVN6ANoFkdAge+qlHjIaXV9lChoBmgJaA9DCJM16iEaXltAlIaUUpRoFU3oA2gWR0CB8Tn9NvfkdX2UKGgGaAloD0MIGF5J8lzHX0CUhpRSlGgVTegDaBZHQIH1NjmSyMV1fZQoaAZoCWgPQwiNRj6v+LBiQJSGlFKUaBVN6ANoFkdAgf8Ktga3qnV9lChoBmgJaA9DCFjnGJC90mJAlIaUUpRoFU3oA2gWR0CCAdIUahpQdX2UKGgGaAloD0MIroGtEqw7YkCUhpRSlGgVTegDaBZHQIIK6sbNr0t1fZQoaAZoCWgPQwiXrmAb8exjQJSGlFKUaBVN6ANoFkdAggrwmu1WsHV9lChoBmgJaA9DCCgqG9ZU5hVAlIaUUpRoFU0ZAWgWR0CCDxF9a2WqdWUu"
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 124,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:28f3286b0388a034d7b9237a0f4802b8d31e4fa1ac1af42a89e298177bdcc547
|
3 |
+
size 87865
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:33a84ee4782aa3ea8940f91d81d3e0a2794d47a2cf1ae5e292a2558657a19bf8
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
|
2 |
+
Python: 3.8.15
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.12.1+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (251 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 192.1011339076695, "std_reward": 40.308433509128385, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-05T13:26:57.347515"}
|