Upload PPO LunarLander-v2 trained agent
Browse files- .gitattributes +1 -0
- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 249.72 +/- 16.19
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x79b089b6e7a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x79b089b6e840>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x79b089b6e8e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x79b089b6e980>", "_build": "<function ActorCriticPolicy._build at 0x79b089b6ea20>", "forward": "<function ActorCriticPolicy.forward at 0x79b089b6eac0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x79b089b6eb60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x79b089b6ec00>", "_predict": "<function ActorCriticPolicy._predict at 0x79b089b6eca0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x79b089b6ed40>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x79b089b6ede0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x79b089b6ee80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x79b08a3bd580>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1740822871574779078, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAACAaJ7604GQ+Sb6UPq72Wr4ePMM6EQoXPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG4GzqKP4mGMAWyUTUABjAF0lEdAmp1dTLns9nV9lChoBkdAbHq3ZPEbYWgHTVMBaAhHQJqft2C/XXl1fZQoaAZHQHCBood+5OJoB01lAWgIR0Cao8v5xiobdX2UKGgGR0Bvs/k92X9jaAdNPQFoCEdAmqWLaIvalHV9lChoBkdAbC0bb1yvLWgHTSIBaAhHQJqnLTkQwsZ1fZQoaAZHQG2lyBbwBo5oB01aAWgIR0CaqlNjslcAdX2UKGgGR0BrkhUFSsKcaAdNPAFoCEdAmqwbBO58SnV9lChoBkdAcAvsfJV81GgHTXMBaAhHQJquKJXQtz11fZQoaAZHQHHXotxuKoBoB00eAWgIR0CasPRXwLE2dX2UKGgGR0Bv7oWBSUC8aAdNPgFoCEdAmrKtAood/HV9lChoBkdAccnH+6y0KWgHTV8BaAhHQJq0oiliz9l1fZQoaAZHQGxEtb9qDbtoB01EAWgIR0Cat7EcbR4RdX2UKGgGR0BwgGiTMaCMaAdNiwFoCEdAmrnqvA44qHV9lChoBkdAbMNAGB4D92gHTSoBaAhHQJq7kvmHP/t1fZQoaAZHQG9fJqZc9ntoB00yAWgIR0CavrlMRHwxdX2UKGgGR0BtwgwyqMm4aAdNKAFoCEdAmsB2HgxagXV9lChoBkdAcb8JWeYlY2gHTaQBaAhHQJrCy717IDJ1fZQoaAZHQG6KtEXtShtoB01BAWgIR0Caxc4Kx9ofdX2UKGgGR0BsfZ62OQyRaAdNSAFoCEdAmsedjTa0yHV9lChoBkdAcwYFcY64lWgHTU8BaAhHQJrJf8qFyrB1fZQoaAZHQHCkmorFwUBoB01LAWgIR0CazUB0ZFXrdX2UKGgGR0BwJf+l0o0AaAdNYAFoCEdAms+bW3BpH3V9lChoBkdAcDJrleWv82gHTWEBaAhHQJrSZQbdadN1fZQoaAZHQGSHUaqCHypoB03oA2gIR0Ca2VvfCQ9zdX2UKGgGR0BwgtfqoqCpaAdNOAFoCEdAmtxH3xnWa3V9lChoBkdAb0l2HLzPKWgHTWMBaAhHQJreRTyauwJ1fZQoaAZHQHH0Hwob4rVoB01mAWgIR0Ca4DqOtGNJdX2UKGgGR0BOncOLBKtgaAdL6mgIR0Ca4Yz9CNS7dX2UKGgGR0ByAcFfReC1aAdNmAFoCEdAmuUOsgdOqXV9lChoBkdAb4IrVe8f3mgHTV4BaAhHQJrm94mkWRB1fZQoaAZHQHHrJ6yB06poB02sAWgIR0Ca6pO/L1VYdX2UKGgGR0BxItv3rUsnaAdNjgFoCEdAmuy9bcGke3V9lChoBkdAcAU+hoM8YGgHTUEBaAhHQJruhTXJ5mh1fZQoaAZHQF/e7wKBuoBoB03oA2gIR0Ca9W6xxDLKdX2UKGgGR0BtsJNqQA+7aAdNPwFoCEdAmvhl8b70nXV9lChoBkfALsPTG5tm+WgHS89oCEdAmvmPZRKpUHV9lChoBkdAa7goScslLWgHTUsBaAhHQJr7zQE6kqN1fZQoaAZHQG4PINEw35xoB01RAWgIR0Ca/jSy+pOvdX2UKGgGR0Bx2cMvysjnaAdNVgFoCEdAmwJrn1WbPXV9lChoBkdAScLZ+QU5/GgHS/xoCEdAmwPKdDpkgHV9lChoBkdAcEbkO7QLNWgHTVEBaAhHQJsFp1s+FDh1fZQoaAZHQDrG3I+4b0hoB00HAWgIR0CbCFUMXrMUdX2UKGgGR0ByZ2iUPhAGaAdNrAFoCEdAmwrLZFocrHV9lChoBkdAbwJX9zfaYmgHTT0BaAhHQJsMi+pOvdN1fZQoaAZHQHAPkd3jdYZoB03eAWgIR0CbEHABT4tZdX2UKGgGR0BEbh+vyLAIaAdNFAFoCEdAmxHx/qgRLHV9lChoBkdAcAD2OAAhjmgHTXoBaAhHQJsUBrYXfqJ1fZQoaAZHQGwLCrT6SDBoB01KAWgIR0CbFxro4dZJdX2UKGgGR0Bwg0oYvWYnaAdNPwFoCEdAmxjbG7z06HV9lChoBkdAcMeJ3PiT+2gHTasBaAhHQJsbQejmCAd1fZQoaAZHQHEukka/ATJoB01NAWgIR0CbHlBGhEjPdX2UKGgGR0BwCyPxQSBcaAdNUQFoCEdAmyAwFxGUfXV9lChoBkdAbT+38XN1Q2gHTYoBaAhHQJsjsIJJGvx1fZQoaAZHQG9wZQ53kghoB01MAWgIR0CbJYUfPompdX2UKGgGR0BvwxjUd7v5aAdNOQFoCEdAmydRpHqeLHV9lChoBkdAcYqORDCxeWgHTVIBaAhHQJspNcC5mRN1fZQoaAZHQG+9/JvHcUNoB01yAWgIR0CbLUmseXAudX2UKGgGR0BvxvCGetjkaAdNmAFoCEdAmzA4InjQzHV9lChoBkdAci2u3trsSmgHTU8BaAhHQJszxsTFl051fZQoaAZHQHCj0FnqVyFoB00wAWgIR0CbNWzHjp9rdX2UKGgGR0Bx/mm51/2CaAdNVgFoCEdAmzdGhM8HOnV9lChoBkdAcTLApazNU2gHTWYBaAhHQJs6gOtnwod1fZQoaAZHQHG/xRdhRZVoB00hAWgIR0CbPB1oxpL3dX2UKGgGR0BwedAUtZmqaAdNPQFoCEdAmz3eK0lZ5nV9lChoBkdAckWpJwsGxGgHTUgBaAhHQJs/tId2gWd1fZQoaAZHQG9yrnTy8SRoB013AWgIR0CbQwI/7iyZdX2UKGgGR0BweUaBI4EPaAdNRAFoCEdAm0TM3uNPxnV9lChoBkdAcGu/5ckdFWgHTYABaAhHQJtIKMAFPi11fZQoaAZHQHEB89Oh0yRoB01RAWgIR0CbShBKL877dX2UKGgGR0Bx6ilCTlkpaAdNmQFoCEdAm0xdJBgNPXV9lChoBkdAcVQERradtmgHTUIBaAhHQJtPVzhgmZ51fZQoaAZHQHDp0ELYwqRoB01oAWgIR0CbUVzu4PPLdX2UKGgGR0BscYDoyKvWaAdNNwFoCEdAm1MStmtheHV9lChoBkdAccE5/b0voWgHTWMBaAhHQJtWTfO2RaJ1fZQoaAZHQGtmW3rleWxoB01hAWgIR0CbWEIJJGvwdX2UKGgGR0BxGz+GXXyzaAdNUAFoCEdAm1o0x/NJOHV9lChoBkdAa/mh/y5I6WgHTTwBaAhHQJteAdmxt551fZQoaAZHQG9KfoaDPGBoB01EAWgIR0CbYFZOi35OdX2UKGgGR0Bx2SXOW0JGaAdNVgFoCEdAm2KnyRSxaHV9lChoBkdAcJF3sHB1tGgHTbcBaAhHQJtmSf29L6F1fZQoaAZHQG/UyU9pyp9oB01eAWgIR0CbaDXcQAdXdX2UKGgGR0BwQxK8L8aXaAdNMQFoCEdAm2n5D7ZWaXV9lChoBkdAb+zNcnmaIGgHTdMBaAhHQJtt5lBhQWN1fZQoaAZHQG+AMAvL5h1oB01pAWgIR0Cbb+/c32mIdX2UKGgGR0BqFoAZKnNxaAdNvgFoCEdAm3Oc+eOGTXV9lChoBkdAcEUhdt2s72gHTV4BaAhHQJt1nND+irV1fZQoaAZHQGuj6iblRxdoB01/AWgIR0Cbd7xT850bdX2UKGgGR0BxE8WvbGm2aAdNrwFoCEdAm3tYz3yqdnV9lChoBkdAcRayjYZl4GgHTUcBaAhHQJt9KV+qioN1fZQoaAZHQG0mdvbXYlJoB01dAWgIR0CbfyEr5IpZdX2UKGgGR0BAnrKFIuoQaAdNCQFoCEdAm4HbOeJ53XV9lChoBkdAMnbr1M/QjWgHTREBaAhHQJuDZbmlqJx1fZQoaAZHQHAep0GNaQpoB01WAWgIR0CbhUojOcDsdX2UKGgGR0A2kZ4Oc2BKaAdNBAFoCEdAm4bIF/x2CHV9lChoBkdAJ5EQf6oES2gHTREBaAhHQJuJjm4iHIp1fZQoaAZHQHEDQzP8hs9oB01mAWgIR0CbjDd4mkWRdX2UKGgGR0BA/D4pMHryaAdNEAFoCEdAm44WcJ+lTHV9lChoBkdAbD6i8nNPg2gHTTABaAhHQJuR9OIqLCN1fZQoaAZHQHDz3EMspXpoB01fAWgIR0Cbk+JtSAH3dX2UKGgGR0Bx3QsXizcAaAdNXwFoCEdAm5XTr3TNMXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3908, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.11.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu124", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:58d1bedc81658157409c621a49ef74e1591f06b87b97375eab9ddeb8dae9b465
|
3 |
+
size 147474
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x79b089b6e7a0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x79b089b6e840>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x79b089b6e8e0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x79b089b6e980>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x79b089b6ea20>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x79b089b6eac0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x79b089b6eb60>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x79b089b6ec00>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x79b089b6eca0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x79b089b6ed40>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x79b089b6ede0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x79b089b6ee80>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x79b08a3bd580>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1000448,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1740822871574779078,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAACAaJ7604GQ+Sb6UPq72Wr4ePMM6EQoXPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.00044800000000000395,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG4GzqKP4mGMAWyUTUABjAF0lEdAmp1dTLns9nV9lChoBkdAbHq3ZPEbYWgHTVMBaAhHQJqft2C/XXl1fZQoaAZHQHCBood+5OJoB01lAWgIR0Cao8v5xiobdX2UKGgGR0Bvs/k92X9jaAdNPQFoCEdAmqWLaIvalHV9lChoBkdAbC0bb1yvLWgHTSIBaAhHQJqnLTkQwsZ1fZQoaAZHQG2lyBbwBo5oB01aAWgIR0CaqlNjslcAdX2UKGgGR0BrkhUFSsKcaAdNPAFoCEdAmqwbBO58SnV9lChoBkdAcAvsfJV81GgHTXMBaAhHQJquKJXQtz11fZQoaAZHQHHXotxuKoBoB00eAWgIR0CasPRXwLE2dX2UKGgGR0Bv7oWBSUC8aAdNPgFoCEdAmrKtAood/HV9lChoBkdAccnH+6y0KWgHTV8BaAhHQJq0oiliz9l1fZQoaAZHQGxEtb9qDbtoB01EAWgIR0Cat7EcbR4RdX2UKGgGR0BwgGiTMaCMaAdNiwFoCEdAmrnqvA44qHV9lChoBkdAbMNAGB4D92gHTSoBaAhHQJq7kvmHP/t1fZQoaAZHQG9fJqZc9ntoB00yAWgIR0CavrlMRHwxdX2UKGgGR0BtwgwyqMm4aAdNKAFoCEdAmsB2HgxagXV9lChoBkdAcb8JWeYlY2gHTaQBaAhHQJrCy717IDJ1fZQoaAZHQG6KtEXtShtoB01BAWgIR0Caxc4Kx9ofdX2UKGgGR0BsfZ62OQyRaAdNSAFoCEdAmsedjTa0yHV9lChoBkdAcwYFcY64lWgHTU8BaAhHQJrJf8qFyrB1fZQoaAZHQHCkmorFwUBoB01LAWgIR0CazUB0ZFXrdX2UKGgGR0BwJf+l0o0AaAdNYAFoCEdAms+bW3BpH3V9lChoBkdAcDJrleWv82gHTWEBaAhHQJrSZQbdadN1fZQoaAZHQGSHUaqCHypoB03oA2gIR0Ca2VvfCQ9zdX2UKGgGR0BwgtfqoqCpaAdNOAFoCEdAmtxH3xnWa3V9lChoBkdAb0l2HLzPKWgHTWMBaAhHQJreRTyauwJ1fZQoaAZHQHH0Hwob4rVoB01mAWgIR0Ca4DqOtGNJdX2UKGgGR0BOncOLBKtgaAdL6mgIR0Ca4Yz9CNS7dX2UKGgGR0ByAcFfReC1aAdNmAFoCEdAmuUOsgdOqXV9lChoBkdAb4IrVe8f3mgHTV4BaAhHQJrm94mkWRB1fZQoaAZHQHHrJ6yB06poB02sAWgIR0Ca6pO/L1VYdX2UKGgGR0BxItv3rUsnaAdNjgFoCEdAmuy9bcGke3V9lChoBkdAcAU+hoM8YGgHTUEBaAhHQJruhTXJ5mh1fZQoaAZHQF/e7wKBuoBoB03oA2gIR0Ca9W6xxDLKdX2UKGgGR0BtsJNqQA+7aAdNPwFoCEdAmvhl8b70nXV9lChoBkfALsPTG5tm+WgHS89oCEdAmvmPZRKpUHV9lChoBkdAa7goScslLWgHTUsBaAhHQJr7zQE6kqN1fZQoaAZHQG4PINEw35xoB01RAWgIR0Ca/jSy+pOvdX2UKGgGR0Bx2cMvysjnaAdNVgFoCEdAmwJrn1WbPXV9lChoBkdAScLZ+QU5/GgHS/xoCEdAmwPKdDpkgHV9lChoBkdAcEbkO7QLNWgHTVEBaAhHQJsFp1s+FDh1fZQoaAZHQDrG3I+4b0hoB00HAWgIR0CbCFUMXrMUdX2UKGgGR0ByZ2iUPhAGaAdNrAFoCEdAmwrLZFocrHV9lChoBkdAbwJX9zfaYmgHTT0BaAhHQJsMi+pOvdN1fZQoaAZHQHAPkd3jdYZoB03eAWgIR0CbEHABT4tZdX2UKGgGR0BEbh+vyLAIaAdNFAFoCEdAmxHx/qgRLHV9lChoBkdAcAD2OAAhjmgHTXoBaAhHQJsUBrYXfqJ1fZQoaAZHQGwLCrT6SDBoB01KAWgIR0CbFxro4dZJdX2UKGgGR0Bwg0oYvWYnaAdNPwFoCEdAmxjbG7z06HV9lChoBkdAcMeJ3PiT+2gHTasBaAhHQJsbQejmCAd1fZQoaAZHQHEukka/ATJoB01NAWgIR0CbHlBGhEjPdX2UKGgGR0BwCyPxQSBcaAdNUQFoCEdAmyAwFxGUfXV9lChoBkdAbT+38XN1Q2gHTYoBaAhHQJsjsIJJGvx1fZQoaAZHQG9wZQ53kghoB01MAWgIR0CbJYUfPompdX2UKGgGR0BvwxjUd7v5aAdNOQFoCEdAmydRpHqeLHV9lChoBkdAcYqORDCxeWgHTVIBaAhHQJspNcC5mRN1fZQoaAZHQG+9/JvHcUNoB01yAWgIR0CbLUmseXAudX2UKGgGR0BvxvCGetjkaAdNmAFoCEdAmzA4InjQzHV9lChoBkdAci2u3trsSmgHTU8BaAhHQJszxsTFl051fZQoaAZHQHCj0FnqVyFoB00wAWgIR0CbNWzHjp9rdX2UKGgGR0Bx/mm51/2CaAdNVgFoCEdAmzdGhM8HOnV9lChoBkdAcTLApazNU2gHTWYBaAhHQJs6gOtnwod1fZQoaAZHQHG/xRdhRZVoB00hAWgIR0CbPB1oxpL3dX2UKGgGR0BwedAUtZmqaAdNPQFoCEdAmz3eK0lZ5nV9lChoBkdAckWpJwsGxGgHTUgBaAhHQJs/tId2gWd1fZQoaAZHQG9yrnTy8SRoB013AWgIR0CbQwI/7iyZdX2UKGgGR0BweUaBI4EPaAdNRAFoCEdAm0TM3uNPxnV9lChoBkdAcGu/5ckdFWgHTYABaAhHQJtIKMAFPi11fZQoaAZHQHEB89Oh0yRoB01RAWgIR0CbShBKL877dX2UKGgGR0Bx6ilCTlkpaAdNmQFoCEdAm0xdJBgNPXV9lChoBkdAcVQERradtmgHTUIBaAhHQJtPVzhgmZ51fZQoaAZHQHDp0ELYwqRoB01oAWgIR0CbUVzu4PPLdX2UKGgGR0BscYDoyKvWaAdNNwFoCEdAm1MStmtheHV9lChoBkdAccE5/b0voWgHTWMBaAhHQJtWTfO2RaJ1fZQoaAZHQGtmW3rleWxoB01hAWgIR0CbWEIJJGvwdX2UKGgGR0BxGz+GXXyzaAdNUAFoCEdAm1o0x/NJOHV9lChoBkdAa/mh/y5I6WgHTTwBaAhHQJteAdmxt551fZQoaAZHQG9KfoaDPGBoB01EAWgIR0CbYFZOi35OdX2UKGgGR0Bx2SXOW0JGaAdNVgFoCEdAm2KnyRSxaHV9lChoBkdAcJF3sHB1tGgHTbcBaAhHQJtmSf29L6F1fZQoaAZHQG/UyU9pyp9oB01eAWgIR0CbaDXcQAdXdX2UKGgGR0BwQxK8L8aXaAdNMQFoCEdAm2n5D7ZWaXV9lChoBkdAb+zNcnmaIGgHTdMBaAhHQJtt5lBhQWN1fZQoaAZHQG+AMAvL5h1oB01pAWgIR0Cbb+/c32mIdX2UKGgGR0BqFoAZKnNxaAdNvgFoCEdAm3Oc+eOGTXV9lChoBkdAcEUhdt2s72gHTV4BaAhHQJt1nND+irV1fZQoaAZHQGuj6iblRxdoB01/AWgIR0Cbd7xT850bdX2UKGgGR0BxE8WvbGm2aAdNrwFoCEdAm3tYz3yqdnV9lChoBkdAcRayjYZl4GgHTUcBaAhHQJt9KV+qioN1fZQoaAZHQG0mdvbXYlJoB01dAWgIR0CbfyEr5IpZdX2UKGgGR0BAnrKFIuoQaAdNCQFoCEdAm4HbOeJ53XV9lChoBkdAMnbr1M/QjWgHTREBaAhHQJuDZbmlqJx1fZQoaAZHQHAep0GNaQpoB01WAWgIR0CbhUojOcDsdX2UKGgGR0A2kZ4Oc2BKaAdNBAFoCEdAm4bIF/x2CHV9lChoBkdAJ5EQf6oES2gHTREBaAhHQJuJjm4iHIp1fZQoaAZHQHEDQzP8hs9oB01mAWgIR0CbjDd4mkWRdX2UKGgGR0BA/D4pMHryaAdNEAFoCEdAm44WcJ+lTHV9lChoBkdAbD6i8nNPg2gHTTABaAhHQJuR9OIqLCN1fZQoaAZHQHDz3EMspXpoB01fAWgIR0Cbk+JtSAH3dX2UKGgGR0Bx3QsXizcAaAdNXwFoCEdAm5XTr3TNMXVlLg=="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 3908,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 1,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:09f48bb41164fef12eeea97ca2fa59c629352eb82debacb35649ed8b2e291540
|
3 |
+
size 88362
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b60538e97a7284c9e191ce273e33a24b44a5d547a5aad69099ca944b2c47bece
|
3 |
+
size 43762
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
|
2 |
+
- Python: 3.11.11
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.5.1+cu124
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.26.4
|
7 |
+
- Cloudpickle: 3.1.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:48140516aec76ab95cab7a0e83a3dce1975511f6eb99b65e2d796e56c1a7f7b3
|
3 |
+
size 194270
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 249.72175825960616, "std_reward": 16.188200530847116, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2025-03-01T10:41:03.672926"}
|