thisiswooyeol commited on
Commit
37958cc
1 Parent(s): b1e655b

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 265.38 +/- 18.42
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x78f04db9a0e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x78f04db9a170>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x78f04db9a200>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x78f04db9a290>", "_build": "<function ActorCriticPolicy._build at 0x78f04db9a320>", "forward": "<function ActorCriticPolicy.forward at 0x78f04db9a3b0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x78f04db9a440>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x78f04db9a4d0>", "_predict": "<function ActorCriticPolicy._predict at 0x78f04db9a560>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x78f04db9a5f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x78f04db9a680>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x78f04db9a710>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x78f04db8f900>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1703523868016491878, "learning_rate": {":type:": "<class 'function'>", ":serialized:": "gAWVJAMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAksTQxR8AGQBawByBogAUwB8AIgBFABTAJSMjAogICAgICAgIFByb2dyZXNzIHdpbGwgZGVjcmVhc2UgZnJvbSAxIChiZWdpbm5pbmcpIHRvIDAuCgogICAgICAgIDpwYXJhbSBwcm9ncmVzc19yZW1haW5pbmc6CiAgICAgICAgOnJldHVybjogY3VycmVudCBsZWFybmluZyByYXRlCiAgICAgICAglEc/0zMzMzMzM4aUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjB48aXB5dGhvbi1pbnB1dC05LWMxMjE3YTNhYzFhND6UjARmdW5jlEsUQwYIBwQBCAKUjAtmaW5hbF92YWx1ZZSMDWluaXRpYWxfdmFsdWWUhpQpdJRSlH2UKIwLX19wYWNrYWdlX1+UTowIX19uYW1lX1+UjAhfX21haW5fX5R1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlGgaKVKUhpR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMHWxpbmVhcl9zY2hlZHVsZS48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UKGgLjAhidWlsdGluc5SMBWZsb2F0lJOUjAZyZXR1cm6UaCt1jA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5RoCYwLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUaDNHP1BiTdLxqfyFlFKUhpSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADNzzDkuKf89d54BPc/Xf75qOsc90fmouwAAAAAAAAAAzQGgPWTDrT4epze+tqChvqliXL0y1hu7AAAAAAAAAABmppY94ioDPxWq6T1Kq9O+UuVXPc1XaTwAAAAAAAAAAC30fD52r4M/BtPyPmBbFr/+hLs+wggGPgAAAAAAAAAAsxfbvU3ICz7yL7I+HE9cvrVwPT7CCWY9AAAAAAAAAACAzD49XJN4uqah57QmfuevkQ6Pu9gFRDQAAIA/AACAPwAFMz3c5GS8akK8PYf0gz01tLO94KByPAAAgD8AAIA/zTrNPRTqhroRgCW0/GoiLpZcIru4KpszAACAPwAAAAAzJ+I900yJP8qBVz5EOvm+0IsQPowcLT0AAAAAAAAAAFp0mb2nkXw/YeAnvhyKD78DZ/69HSlMvQAAAAAAAAAAOukUPtxdIT91XNu9PT/Rvu/cqz0GfJa9AAAAAAAAAADm98a94dCAuh/aSDlr+0Y0RoZcOzOOargAAAAAAACAPwClwTxFNXM+cxfoveYBor60Ex6+JGqaPQAAAAAAAAAAzdy3upe5uD+p/hq89YS6vaVR0TrmnAo7AAAAAAAAAACmKxs+pH4dP4sYE71QiMW+vu7vPWr7dr0AAAAAAAAAAG28e76BXeA+Avp+Ph5b9b5JJIC+iJF/PgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV7AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHGTIQWepXKMAWyUS+CMAXSUR0CSAOU0Nz8xdX2UKGgGR0BvebonrpqzaAdL52gIR0CSAZNdZ7ojdX2UKGgGR0BzL4n5SFXaaAdL3mgIR0CSAbHfuTibdX2UKGgGR0BvTfovBacJaAdLy2gIR0CSAf9mHxjKdX2UKGgGR0Bx8ZP2wmmcaAdL/mgIR0CSArpTMqz7dX2UKGgGR0BzAK1uzhP1aAdNDAFoCEdAkgLQbyYoiXV9lChoBkdAcvy7LMcIaGgHS+doCEdAkgM7IPsiS3V9lChoBkdAcVNhqCYkV2gHS9FoCEdAkgNTpkf9xnV9lChoBkdAcN7hS9/SY2gHS/1oCEdAkgQrpeNT+HV9lChoBkdAc/U4pMHryGgHTRoBaAhHQJIEwLa24NJ1fZQoaAZHQHGKdmYjSohoB0vYaAhHQJIFGaz/p+t1fZQoaAZHQHLioUFjd59oB0vjaAhHQJIFdORDCxh1fZQoaAZHQHGrCXIEKVpoB0vyaAhHQJIFu3w1BMV1fZQoaAZHQHH9wrH2h7FoB0veaAhHQJIF4e5nUUh1fZQoaAZHQHBxyOearm1oB00EAWgIR0CSBkU6xPfsdX2UKGgGR0BxL2KvV3EAaAdNCQFoCEdAkgbekk8ifXV9lChoBkdAcQYhNucc2mgHS9RoCEdAkgdRqGlANXV9lChoBkdAcNMoLG7z1GgHS/ZoCEdAkgd3+2mYSnV9lChoBkdAbFOh4+r2g2gHS91oCEdAkgelCXyAhHV9lChoBkdAcvfWK/EfkmgHS9doCEdAkgfGCqZMMHV9lChoBkdAcV9EOy3TeGgHS81oCEdAkggymdiDunV9lChoBkdAbm66UaAFxGgHS9doCEdAkgiWldkauXV9lChoBkdAcTo+j/MnqmgHS9poCEdAkgkpHqeK9HV9lChoBkdAcyBSBbwBo2gHS+JoCEdAkglCjHn2ZnV9lChoBkdAb18ku6ErXmgHS9loCEdAkgoC4e9zwXV9lChoBkdAbd1DBMzuW2gHS+hoCEdAkgruW0JF9nV9lChoBkdAcN5Jaq0dBGgHS81oCEdAkgtNt2s7uHV9lChoBkdAcF8WHDaXbGgHS9toCEdAkguPjKgZj3V9lChoBkdAcAjVafSQYGgHS8hoCEdAkguYa99MK3V9lChoBkdAcR+ggHNX5mgHS/1oCEdAkiFz5j6N2nV9lChoBkdAbVobTc6/7GgHTREBaAhHQJIiWPKdQO51fZQoaAZHQHKALhisnzBoB0v1aAhHQJIi+XokiUx1fZQoaAZHQHA0pUkv9LpoB0vkaAhHQJIjHmNipeh1fZQoaAZHQHDR1AeJYT1oB0vuaAhHQJIjNn+Q2dd1fZQoaAZHQHDGXqVyFPBoB0vhaAhHQJIjWrtE5Qx1fZQoaAZHQHEA3AEdNnJoB0vuaAhHQJIjluyeI2x1fZQoaAZHQHDEIsNDtw9oB0vWaAhHQJIjlIg/1QJ1fZQoaAZHQHJfVLamGdtoB0vCaAhHQJIkDWRRuTB1fZQoaAZHQHBpzneSB9VoB0vuaAhHQJIkdoAXEZR1fZQoaAZHQG8ycDKYAsFoB0vgaAhHQJIkuOT7l7t1fZQoaAZHQHMTEiUxEfFoB0vnaAhHQJIlrSThYNl1fZQoaAZHQHEZ4rBj4HpoB0vSaAhHQJImDN8ma6V1fZQoaAZHQHIfJQUHpr1oB0vXaAhHQJImm0Y0l7d1fZQoaAZHQHJCo287IT5oB0veaAhHQJInEO5J9Rd1fZQoaAZHQG4yTuF6AvtoB0vgaAhHQJInF5LRKHx1fZQoaAZHQHAsJUxVQyhoB0vgaAhHQJIncYGdI5J1fZQoaAZHQHGP1ktmL+BoB0vYaAhHQJIo63trsSl1fZQoaAZHQHFPhcqvvBtoB0vXaAhHQJIpAbo8p1B1fZQoaAZHQHInz4L1EmZoB0v7aAhHQJIpIfA9FF51fZQoaAZHQHGygd4mkWRoB0vLaAhHQJIpD4593KV1fZQoaAZHQHEQp/XoTwloB0vXaAhHQJIpKRZEDyR1fZQoaAZHQG1+opx3mmtoB0vjaAhHQJIpw84gieN1fZQoaAZHQHKvw7HQyARoB0v7aAhHQJIpxdSl3yJ1fZQoaAZHQHGDKHO8kD9oB0vYaAhHQJIqZiAlOXV1fZQoaAZHQHMmpBPbfxdoB00EAWgIR0CSKzQVbiZOdX2UKGgGR0Bw4KnjyWiUaAdNDgFoCEdAkiwslPacqnV9lChoBkdAcg2tVJcxCmgHS+doCEdAkiyRbjcVQHV9lChoBkdAcP7ai9IwumgHS9toCEdAkizFkhA4XHV9lChoBkdAceVClrM1TGgHS8poCEdAkizH752yLXV9lChoBkdAcGAIXCTEBWgHTQoBaAhHQJItNc8kleF1fZQoaAZHQHFqOYIBzWBoB0vpaAhHQJIt99jPOY91fZQoaAZHQHJTnbEgntxoB00MAWgIR0CSLopXZGrkdX2UKGgGR0BxT9CeEqUeaAdLzGgIR0CSLsWHUMG5dX2UKGgGR0Bxo8HkcS5BaAdLzmgIR0CSLsjjaPCEdX2UKGgGR0Bxy8nKGL1maAdL5WgIR0CSL0FSbYsedX2UKGgGR0Byuzfxc3VDaAdL5GgIR0CSL26ySmqHdX2UKGgGR0ByjTs7dSEUaAdL6GgIR0CSL2UJOWSmdX2UKGgGR0By/r0/W1+iaAdL1WgIR0CSL42Yv38GdX2UKGgGR0BzkbJeVs1saAdL9mgIR0CSMFIMz/IbdX2UKGgGR0Bx6KkpI+W4aAdLy2gIR0CSMJd3B55adX2UKGgGR0BxZsm4RVZLaAdL/WgIR0CSMSn5zo2XdX2UKGgGR0BxlywA2hqTaAdL0GgIR0CSMiJrLyMDdX2UKGgGR0BxXwY/FBIGaAdL6GgIR0CSMlFId2gWdX2UKGgGR0BzCHZ00WM1aAdL12gIR0CSMlnfEXLvdX2UKGgGR0BypduQ6p5vaAdL32gIR0CSMmYgJTl1dX2UKGgGR0Bw9mSB9TgmaAdLxWgIR0CSM6I0IkZ8dX2UKGgGR0BuP+3jMmngaAdL+mgIR0CSM7xO+IuXdX2UKGgGR0BzG/Eit7rtaAdL8mgIR0CSNETRIBikdX2UKGgGR0Byp5ha1TisaAdLxWgIR0CSNMwMYuTSdX2UKGgGR0BxSJRtP558aAdL52gIR0CSNNt7KJVKdX2UKGgGR0BwIa15Sm65aAdL7mgIR0CSNQ/s3Q2NdX2UKGgGR0Buvhm29crzaAdL3GgIR0CSNQx8D0UXdX2UKGgGR0BwPtK6FuejaAdL4mgIR0CSNVWepXIVdX2UKGgGR0ByXK4b0e2eaAdLz2gIR0CSNdqebutwdX2UKGgGR0BxvXIo3JgcaAdL/2gIR0CSNiTR6WxAdX2UKGgGR0BzJfHXEqDsaAdLz2gIR0CSNihNdqtYdX2UKGgGR0BuwVrftQbdaAdL3mgIR0CSNxHEMspYdX2UKGgGR0BxHH4YaYNRaAdL0WgIR0CSN+FUhmoSdX2UKGgGR0Bw+jnPmganaAdL/mgIR0CSONrC3w1BdX2UKGgGR0BzgtRyfcveaAdL/mgIR0CSORCaJAMVdX2UKGgGR0ByeRoi9qUNaAdLzmgIR0CSOSoCMglodX2UKGgGR0Byu6brkbPyaAdNBAFoCEdAkjk2FBY3enV9lChoBkdAcqcw9JSR82gHS/BoCEdAkjoEDU3GXHV9lChoBkdAcrFQUpNKy2gHS+BoCEdAkjq4Q4CIUXV9lChoBkdAcZCNz8xbjmgHS9poCEdAkjrTtgKF7HV9lChoBkdAcEmECNjslmgHS+FoCEdAkjrON96Tn3V9lChoBkdAcDuIyCWeH2gHTRsBaAhHQJI78OQQtjF1fZQoaAZHQG9yJRO1v2poB0vkaAhHQJI8D9bX6Ip1fZQoaAZHQG/OCSzPa+NoB00CAWgIR0CSPALNfPX1dX2UKGgGR0Bu8g57w8W9aAdL8GgIR0CSPLCUornUdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": 0.02, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVJAMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAksTQxR8AGQBawByBogAUwB8AIgBFABTAJSMjAogICAgICAgIFByb2dyZXNzIHdpbGwgZGVjcmVhc2UgZnJvbSAxIChiZWdpbm5pbmcpIHRvIDAuCgogICAgICAgIDpwYXJhbSBwcm9ncmVzc19yZW1haW5pbmc6CiAgICAgICAgOnJldHVybjogY3VycmVudCBsZWFybmluZyByYXRlCiAgICAgICAglEc/0zMzMzMzM4aUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjB48aXB5dGhvbi1pbnB1dC05LWMxMjE3YTNhYzFhND6UjARmdW5jlEsUQwYIBwQBCAKUjAtmaW5hbF92YWx1ZZSMDWluaXRpYWxfdmFsdWWUhpQpdJRSlH2UKIwLX19wYWNrYWdlX1+UTowIX19uYW1lX1+UjAhfX21haW5fX5R1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlGgaKVKUhpR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMHWxpbmVhcl9zY2hlZHVsZS48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UKGgLjAhidWlsdGluc5SMBWZsb2F0lJOUjAZyZXR1cm6UaCt1jA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5RoCYwLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUaDNHP1BiTdLxqfyFlFKUhpSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ee165825abad00a2f37f9786e77524f8721eb6773e815530e537331e8253de20
3
+ size 149236
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,102 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x78f04db9a0e0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x78f04db9a170>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x78f04db9a200>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x78f04db9a290>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x78f04db9a320>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x78f04db9a3b0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x78f04db9a440>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x78f04db9a4d0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x78f04db9a560>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x78f04db9a5f0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x78f04db9a680>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x78f04db9a710>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x78f04db8f900>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1703523868016491878,
30
+ "learning_rate": {
31
+ ":type:": "<class 'function'>",
32
+ ":serialized:": "gAWVJAMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAksTQxR8AGQBawByBogAUwB8AIgBFABTAJSMjAogICAgICAgIFByb2dyZXNzIHdpbGwgZGVjcmVhc2UgZnJvbSAxIChiZWdpbm5pbmcpIHRvIDAuCgogICAgICAgIDpwYXJhbSBwcm9ncmVzc19yZW1haW5pbmc6CiAgICAgICAgOnJldHVybjogY3VycmVudCBsZWFybmluZyByYXRlCiAgICAgICAglEc/0zMzMzMzM4aUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjB48aXB5dGhvbi1pbnB1dC05LWMxMjE3YTNhYzFhND6UjARmdW5jlEsUQwYIBwQBCAKUjAtmaW5hbF92YWx1ZZSMDWluaXRpYWxfdmFsdWWUhpQpdJRSlH2UKIwLX19wYWNrYWdlX1+UTowIX19uYW1lX1+UjAhfX21haW5fX5R1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlGgaKVKUhpR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMHWxpbmVhcl9zY2hlZHVsZS48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UKGgLjAhidWlsdGluc5SMBWZsb2F0lJOUjAZyZXR1cm6UaCt1jA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5RoCYwLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUaDNHP1BiTdLxqfyFlFKUhpSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
33
+ },
34
+ "tensorboard_log": null,
35
+ "_last_obs": {
36
+ ":type:": "<class 'numpy.ndarray'>",
37
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADNzzDkuKf89d54BPc/Xf75qOsc90fmouwAAAAAAAAAAzQGgPWTDrT4epze+tqChvqliXL0y1hu7AAAAAAAAAABmppY94ioDPxWq6T1Kq9O+UuVXPc1XaTwAAAAAAAAAAC30fD52r4M/BtPyPmBbFr/+hLs+wggGPgAAAAAAAAAAsxfbvU3ICz7yL7I+HE9cvrVwPT7CCWY9AAAAAAAAAACAzD49XJN4uqah57QmfuevkQ6Pu9gFRDQAAIA/AACAPwAFMz3c5GS8akK8PYf0gz01tLO94KByPAAAgD8AAIA/zTrNPRTqhroRgCW0/GoiLpZcIru4KpszAACAPwAAAAAzJ+I900yJP8qBVz5EOvm+0IsQPowcLT0AAAAAAAAAAFp0mb2nkXw/YeAnvhyKD78DZ/69HSlMvQAAAAAAAAAAOukUPtxdIT91XNu9PT/Rvu/cqz0GfJa9AAAAAAAAAADm98a94dCAuh/aSDlr+0Y0RoZcOzOOargAAAAAAACAPwClwTxFNXM+cxfoveYBor60Ex6+JGqaPQAAAAAAAAAAzdy3upe5uD+p/hq89YS6vaVR0TrmnAo7AAAAAAAAAACmKxs+pH4dP4sYE71QiMW+vu7vPWr7dr0AAAAAAAAAAG28e76BXeA+Avp+Ph5b9b5JJIC+iJF/PgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
38
+ },
39
+ "_last_episode_starts": {
40
+ ":type:": "<class 'numpy.ndarray'>",
41
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
42
+ },
43
+ "_last_original_obs": null,
44
+ "_episode_num": 0,
45
+ "use_sde": false,
46
+ "sde_sample_freq": -1,
47
+ "_current_progress_remaining": -0.015808000000000044,
48
+ "_stats_window_size": 100,
49
+ "ep_info_buffer": {
50
+ ":type:": "<class 'collections.deque'>",
51
+ ":serialized:": "gAWV7AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHGTIQWepXKMAWyUS+CMAXSUR0CSAOU0Nz8xdX2UKGgGR0BvebonrpqzaAdL52gIR0CSAZNdZ7ojdX2UKGgGR0BzL4n5SFXaaAdL3mgIR0CSAbHfuTibdX2UKGgGR0BvTfovBacJaAdLy2gIR0CSAf9mHxjKdX2UKGgGR0Bx8ZP2wmmcaAdL/mgIR0CSArpTMqz7dX2UKGgGR0BzAK1uzhP1aAdNDAFoCEdAkgLQbyYoiXV9lChoBkdAcvy7LMcIaGgHS+doCEdAkgM7IPsiS3V9lChoBkdAcVNhqCYkV2gHS9FoCEdAkgNTpkf9xnV9lChoBkdAcN7hS9/SY2gHS/1oCEdAkgQrpeNT+HV9lChoBkdAc/U4pMHryGgHTRoBaAhHQJIEwLa24NJ1fZQoaAZHQHGKdmYjSohoB0vYaAhHQJIFGaz/p+t1fZQoaAZHQHLioUFjd59oB0vjaAhHQJIFdORDCxh1fZQoaAZHQHGrCXIEKVpoB0vyaAhHQJIFu3w1BMV1fZQoaAZHQHH9wrH2h7FoB0veaAhHQJIF4e5nUUh1fZQoaAZHQHBxyOearm1oB00EAWgIR0CSBkU6xPfsdX2UKGgGR0BxL2KvV3EAaAdNCQFoCEdAkgbekk8ifXV9lChoBkdAcQYhNucc2mgHS9RoCEdAkgdRqGlANXV9lChoBkdAcNMoLG7z1GgHS/ZoCEdAkgd3+2mYSnV9lChoBkdAbFOh4+r2g2gHS91oCEdAkgelCXyAhHV9lChoBkdAcvfWK/EfkmgHS9doCEdAkgfGCqZMMHV9lChoBkdAcV9EOy3TeGgHS81oCEdAkggymdiDunV9lChoBkdAbm66UaAFxGgHS9doCEdAkgiWldkauXV9lChoBkdAcTo+j/MnqmgHS9poCEdAkgkpHqeK9HV9lChoBkdAcyBSBbwBo2gHS+JoCEdAkglCjHn2ZnV9lChoBkdAb18ku6ErXmgHS9loCEdAkgoC4e9zwXV9lChoBkdAbd1DBMzuW2gHS+hoCEdAkgruW0JF9nV9lChoBkdAcN5Jaq0dBGgHS81oCEdAkgtNt2s7uHV9lChoBkdAcF8WHDaXbGgHS9toCEdAkguPjKgZj3V9lChoBkdAcAjVafSQYGgHS8hoCEdAkguYa99MK3V9lChoBkdAcR+ggHNX5mgHS/1oCEdAkiFz5j6N2nV9lChoBkdAbVobTc6/7GgHTREBaAhHQJIiWPKdQO51fZQoaAZHQHKALhisnzBoB0v1aAhHQJIi+XokiUx1fZQoaAZHQHA0pUkv9LpoB0vkaAhHQJIjHmNipeh1fZQoaAZHQHDR1AeJYT1oB0vuaAhHQJIjNn+Q2dd1fZQoaAZHQHDGXqVyFPBoB0vhaAhHQJIjWrtE5Qx1fZQoaAZHQHEA3AEdNnJoB0vuaAhHQJIjluyeI2x1fZQoaAZHQHDEIsNDtw9oB0vWaAhHQJIjlIg/1QJ1fZQoaAZHQHJfVLamGdtoB0vCaAhHQJIkDWRRuTB1fZQoaAZHQHBpzneSB9VoB0vuaAhHQJIkdoAXEZR1fZQoaAZHQG8ycDKYAsFoB0vgaAhHQJIkuOT7l7t1fZQoaAZHQHMTEiUxEfFoB0vnaAhHQJIlrSThYNl1fZQoaAZHQHEZ4rBj4HpoB0vSaAhHQJImDN8ma6V1fZQoaAZHQHIfJQUHpr1oB0vXaAhHQJImm0Y0l7d1fZQoaAZHQHJCo287IT5oB0veaAhHQJInEO5J9Rd1fZQoaAZHQG4yTuF6AvtoB0vgaAhHQJInF5LRKHx1fZQoaAZHQHAsJUxVQyhoB0vgaAhHQJIncYGdI5J1fZQoaAZHQHGP1ktmL+BoB0vYaAhHQJIo63trsSl1fZQoaAZHQHFPhcqvvBtoB0vXaAhHQJIpAbo8p1B1fZQoaAZHQHInz4L1EmZoB0v7aAhHQJIpIfA9FF51fZQoaAZHQHGygd4mkWRoB0vLaAhHQJIpD4593KV1fZQoaAZHQHEQp/XoTwloB0vXaAhHQJIpKRZEDyR1fZQoaAZHQG1+opx3mmtoB0vjaAhHQJIpw84gieN1fZQoaAZHQHKvw7HQyARoB0v7aAhHQJIpxdSl3yJ1fZQoaAZHQHGDKHO8kD9oB0vYaAhHQJIqZiAlOXV1fZQoaAZHQHMmpBPbfxdoB00EAWgIR0CSKzQVbiZOdX2UKGgGR0Bw4KnjyWiUaAdNDgFoCEdAkiwslPacqnV9lChoBkdAcg2tVJcxCmgHS+doCEdAkiyRbjcVQHV9lChoBkdAcP7ai9IwumgHS9toCEdAkizFkhA4XHV9lChoBkdAceVClrM1TGgHS8poCEdAkizH752yLXV9lChoBkdAcGAIXCTEBWgHTQoBaAhHQJItNc8kleF1fZQoaAZHQHFqOYIBzWBoB0vpaAhHQJIt99jPOY91fZQoaAZHQHJTnbEgntxoB00MAWgIR0CSLopXZGrkdX2UKGgGR0BxT9CeEqUeaAdLzGgIR0CSLsWHUMG5dX2UKGgGR0Bxo8HkcS5BaAdLzmgIR0CSLsjjaPCEdX2UKGgGR0Bxy8nKGL1maAdL5WgIR0CSL0FSbYsedX2UKGgGR0Byuzfxc3VDaAdL5GgIR0CSL26ySmqHdX2UKGgGR0ByjTs7dSEUaAdL6GgIR0CSL2UJOWSmdX2UKGgGR0By/r0/W1+iaAdL1WgIR0CSL42Yv38GdX2UKGgGR0BzkbJeVs1saAdL9mgIR0CSMFIMz/IbdX2UKGgGR0Bx6KkpI+W4aAdLy2gIR0CSMJd3B55adX2UKGgGR0BxZsm4RVZLaAdL/WgIR0CSMSn5zo2XdX2UKGgGR0BxlywA2hqTaAdL0GgIR0CSMiJrLyMDdX2UKGgGR0BxXwY/FBIGaAdL6GgIR0CSMlFId2gWdX2UKGgGR0BzCHZ00WM1aAdL12gIR0CSMlnfEXLvdX2UKGgGR0BypduQ6p5vaAdL32gIR0CSMmYgJTl1dX2UKGgGR0Bw9mSB9TgmaAdLxWgIR0CSM6I0IkZ8dX2UKGgGR0BuP+3jMmngaAdL+mgIR0CSM7xO+IuXdX2UKGgGR0BzG/Eit7rtaAdL8mgIR0CSNETRIBikdX2UKGgGR0Byp5ha1TisaAdLxWgIR0CSNMwMYuTSdX2UKGgGR0BxSJRtP558aAdL52gIR0CSNNt7KJVKdX2UKGgGR0BwIa15Sm65aAdL7mgIR0CSNQ/s3Q2NdX2UKGgGR0Buvhm29crzaAdL3GgIR0CSNQx8D0UXdX2UKGgGR0BwPtK6FuejaAdL4mgIR0CSNVWepXIVdX2UKGgGR0ByXK4b0e2eaAdLz2gIR0CSNdqebutwdX2UKGgGR0BxvXIo3JgcaAdL/2gIR0CSNiTR6WxAdX2UKGgGR0BzJfHXEqDsaAdLz2gIR0CSNihNdqtYdX2UKGgGR0BuwVrftQbdaAdL3mgIR0CSNxHEMspYdX2UKGgGR0BxHH4YaYNRaAdL0WgIR0CSN+FUhmoSdX2UKGgGR0Bw+jnPmganaAdL/mgIR0CSONrC3w1BdX2UKGgGR0BzgtRyfcveaAdL/mgIR0CSORCaJAMVdX2UKGgGR0ByeRoi9qUNaAdLzmgIR0CSOSoCMglodX2UKGgGR0Byu6brkbPyaAdNBAFoCEdAkjk2FBY3enV9lChoBkdAcqcw9JSR82gHS/BoCEdAkjoEDU3GXHV9lChoBkdAcrFQUpNKy2gHS+BoCEdAkjq4Q4CIUXV9lChoBkdAcZCNz8xbjmgHS9poCEdAkjrTtgKF7HV9lChoBkdAcEmECNjslmgHS+FoCEdAkjrON96Tn3V9lChoBkdAcDuIyCWeH2gHTRsBaAhHQJI78OQQtjF1fZQoaAZHQG9yJRO1v2poB0vkaAhHQJI8D9bX6Ip1fZQoaAZHQG/OCSzPa+NoB00CAWgIR0CSPALNfPX1dX2UKGgGR0Bu8g57w8W9aAdL8GgIR0CSPLCUornUdWUu"
52
+ },
53
+ "ep_success_buffer": {
54
+ ":type:": "<class 'collections.deque'>",
55
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
56
+ },
57
+ "_n_updates": 248,
58
+ "observation_space": {
59
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
60
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
61
+ "dtype": "float32",
62
+ "bounded_below": "[ True True True True True True True True]",
63
+ "bounded_above": "[ True True True True True True True True]",
64
+ "_shape": [
65
+ 8
66
+ ],
67
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
68
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
69
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
70
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
71
+ "_np_random": null
72
+ },
73
+ "action_space": {
74
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
75
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
76
+ "n": "4",
77
+ "start": "0",
78
+ "_shape": [],
79
+ "dtype": "int64",
80
+ "_np_random": null
81
+ },
82
+ "n_envs": 16,
83
+ "n_steps": 1024,
84
+ "gamma": 0.999,
85
+ "gae_lambda": 0.98,
86
+ "ent_coef": 0.01,
87
+ "vf_coef": 0.5,
88
+ "max_grad_norm": 0.5,
89
+ "batch_size": 64,
90
+ "n_epochs": 4,
91
+ "clip_range": {
92
+ ":type:": "<class 'function'>",
93
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
94
+ },
95
+ "clip_range_vf": null,
96
+ "normalize_advantage": true,
97
+ "target_kl": 0.02,
98
+ "lr_schedule": {
99
+ ":type:": "<class 'function'>",
100
+ ":serialized:": "gAWVJAMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAksTQxR8AGQBawByBogAUwB8AIgBFABTAJSMjAogICAgICAgIFByb2dyZXNzIHdpbGwgZGVjcmVhc2UgZnJvbSAxIChiZWdpbm5pbmcpIHRvIDAuCgogICAgICAgIDpwYXJhbSBwcm9ncmVzc19yZW1haW5pbmc6CiAgICAgICAgOnJldHVybjogY3VycmVudCBsZWFybmluZyByYXRlCiAgICAgICAglEc/0zMzMzMzM4aUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjB48aXB5dGhvbi1pbnB1dC05LWMxMjE3YTNhYzFhND6UjARmdW5jlEsUQwYIBwQBCAKUjAtmaW5hbF92YWx1ZZSMDWluaXRpYWxfdmFsdWWUhpQpdJRSlH2UKIwLX19wYWNrYWdlX1+UTowIX19uYW1lX1+UjAhfX21haW5fX5R1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlGgaKVKUhpR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMHWxpbmVhcl9zY2hlZHVsZS48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UKGgLjAhidWlsdGluc5SMBWZsb2F0lJOUjAZyZXR1cm6UaCt1jA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5RoCYwLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUaDNHP1BiTdLxqfyFlFKUhpSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
101
+ }
102
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0d500a2040e5637bbc15c653a6c290fa31a54738c1d56002ac23af84dcdeb1a1
3
+ size 88362
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:48d534cd2d4f2c7cebe7558ebaa0c89af42c5503fa15a261aea7c69654f11590
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.1.0+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (166 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 265.3794322, "std_reward": 18.42189979443485, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-12-25T17:25:06.395088"}