Update README.md
Browse filesadd more details after competition
README.md
CHANGED
@@ -1 +1,36 @@
|
|
1 |
-
fintuned the kykim/bert-kor-base model as a dense passage retrieval context encoder by KLUE
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
fintuned the kykim/bert-kor-base model as a dense passage retrieval context encoder by KLUE dataset
|
2 |
+
this link is experiment result. https://wandb.ai/thingsu/DenseRetrieval
|
3 |
+
|
4 |
+
Corpus : Korean Wikipedia Corpus
|
5 |
+
|
6 |
+
Trained Strategy :
|
7 |
+
- Pretrained Model : kykim/bert-kor-base
|
8 |
+
- Inverse Cloze Task : 16 Epoch, by korquad v 1.0, KLUE MRC dataset
|
9 |
+
- In-batch Negatives : 12 Epoch, by KLUE MRC dataset, random sampling between Sparse Retrieval(TF-IDF) top 100 passage per each query
|
10 |
+
|
11 |
+
I'm not confident about this model will work in other dataset or corpus.
|
12 |
+
'''
|
13 |
+
from Transformers import AutoTokenizer, BertPreTrainedModel, BertModel
|
14 |
+
|
15 |
+
class BertEncoder(BertPreTrainedModel):
|
16 |
+
def __init__(self, config):
|
17 |
+
super(BertEncoder, self).__init__(config)
|
18 |
+
|
19 |
+
self.bert = BertModel(config)
|
20 |
+
self.init_weights()
|
21 |
+
|
22 |
+
|
23 |
+
def forward(self, input_ids, attention_mask=None, token_type_ids=None):
|
24 |
+
outputs = self.bert(input_ids, attention_mask, token_type_ids)
|
25 |
+
pooled_output = outputs[1]
|
26 |
+
return pooled_output
|
27 |
+
|
28 |
+
model_name = 'kykim/bert-kor-base'
|
29 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
30 |
+
|
31 |
+
q_encoder = BertEncoder.from_pretrained("thingsu/koDPR_question")
|
32 |
+
p_encoder = BertEncoder.from_pretrained("thingsu/koDPR_context")
|
33 |
+
|
34 |
+
'''
|
35 |
+
|
36 |
+
|