thesven commited on
Commit
c8bbabd
1 Parent(s): 6f8d50a

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +66 -0
README.md ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: distilbert-base-uncased
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - swag
8
+ metrics:
9
+ - accuracy
10
+ model-index:
11
+ - name: distilbert-swag
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # distilbert-swag
19
+
20
+ This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the swag dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.9079
23
+ - Accuracy: 0.7105
24
+
25
+ ## Model description
26
+
27
+ More information needed
28
+
29
+ ## Intended uses & limitations
30
+
31
+ More information needed
32
+
33
+ ## Training and evaluation data
34
+
35
+ More information needed
36
+
37
+ ## Training procedure
38
+
39
+ ### Training hyperparameters
40
+
41
+ The following hyperparameters were used during training:
42
+ - learning_rate: 5e-05
43
+ - train_batch_size: 8
44
+ - eval_batch_size: 8
45
+ - seed: 42
46
+ - gradient_accumulation_steps: 4
47
+ - total_train_batch_size: 32
48
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
49
+ - lr_scheduler_type: linear
50
+ - num_epochs: 3
51
+
52
+ ### Training results
53
+
54
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
55
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
56
+ | 0.9186 | 1.0 | 2298 | 0.7658 | 0.6950 |
57
+ | 0.5843 | 2.0 | 4597 | 0.7453 | 0.7059 |
58
+ | 0.3548 | 3.0 | 6894 | 0.9079 | 0.7105 |
59
+
60
+
61
+ ### Framework versions
62
+
63
+ - Transformers 4.31.0
64
+ - Pytorch 2.0.1
65
+ - Datasets 2.13.1
66
+ - Tokenizers 0.13.3