flash-attention / benchmark_alibi.py
theonlyengine's picture
Upload 421 files
3f9c425 verified
raw
history blame
11 kB
# Copyright (c) 2024, Sanghun Cho, Tri Dao.
import pickle
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange, repeat
from flash_attn.layers.rotary import apply_rotary_emb
from flash_attn.utils.benchmark import benchmark_all, benchmark_forward, benchmark_backward
from flash_attn.utils.benchmark import benchmark_fwd_bwd, benchmark_combined
from flash_attn import flash_attn_qkvpacked_func, flash_attn_func
try:
import xformers.ops as xops
except ImportError:
xops = None
def generate_cos_sin(seqlen, rotary_dim, device, dtype):
assert rotary_dim % 2 == 0
angle = torch.rand(seqlen * 2, rotary_dim // 2, device=device) * 2 * math.pi
cos = torch.cos(angle).to(dtype=dtype)
sin = torch.sin(angle).to(dtype=dtype)
return cos, sin
def flash_rotary(q, k, v, cos, sin, causal=False):
# corrected by @tridao comments
q = apply_rotary_emb(
q, cos, sin, seqlen_offsets=0, interleaved=False, inplace=True
)
k = apply_rotary_emb(
k, cos, sin, seqlen_offsets=0, interleaved=False, inplace=True
)
return flash_attn_func(q, k, v, causal=causal)
def attn_bias_from_alibi_slopes(
slopes, seqlen_q, seqlen_k, query_padding_mask=None, key_padding_mask=None, causal=False
):
batch, nheads = slopes.shape
device = slopes.device
slopes = rearrange(slopes, "b h -> b h 1 1")
if causal:
return torch.arange(-seqlen_k + 1, 1, device=device, dtype=torch.float32) * slopes
else:
row_idx = rearrange(torch.arange(seqlen_q, device=device, dtype=torch.long), "s -> s 1")
col_idx = torch.arange(seqlen_k, device=device, dtype=torch.long)
sk = (
seqlen_k
if key_padding_mask is None
else rearrange(key_padding_mask.sum(-1), "b -> b 1 1 1")
)
sq = (
seqlen_q
if query_padding_mask is None
else rearrange(query_padding_mask.sum(-1), "b -> b 1 1 1")
)
relative_pos = torch.abs(row_idx + sk - sq - col_idx)
return -slopes * relative_pos.to(dtype=slopes.dtype)
def flops(batch, seqlen, headdim, nheads, causal, mode="fwd"):
assert mode in ["fwd", "bwd", "fwd_bwd"]
f = 4 * batch * seqlen**2 * nheads * headdim // (2 if causal else 1)
return f if mode == "fwd" else (2.5 * f if mode == "bwd" else 3.5 * f)
def efficiency(flop, time):
return (flop / time / 10**12) if not math.isnan(time) else 0.0
def attention_pytorch(q, k, v, dropout_p=0.0, causal=True, attn_bias=None):
"""
Arguments:
q, k, v: (batch_size, seqlen, nheads, head_dim)
dropout_p: float
attn_bias: (batch_size, nheads, seqlen, seqlen) or (1, nheads, seqlen, seqlen)
Output:
output: (batch_size, seqlen, nheads, head_dim)
"""
batch_size, seqlen, nheads, d = q.shape
q = rearrange(q, 'b t h d -> (b h) t d')
k = rearrange(k, 'b s h d -> (b h) d s')
softmax_scale = 1.0 / math.sqrt(d)
# Preallocate attn_weights for `baddbmm`
if attn_bias is not None:
scores = rearrange(attn_bias, 'b h t s -> (b h) t s')
else:
scores = torch.empty(batch_size * nheads, seqlen, seqlen, dtype=q.dtype, device=q.device)
scores = rearrange(torch.baddbmm(scores, q, k, beta=1.0, alpha=softmax_scale),
'(b h) t s -> b h t s', h=nheads)
if causal:
# "triu_tril_cuda_template" not implemented for 'BFloat16'
# So we have to construct the mask in float
causal_mask = torch.triu(torch.full((seqlen, seqlen), -10000.0, device=scores.device), 1)
# TD [2022-09-30]: Adding is faster than masked_fill_ (idk why, just better kernel I guess)
scores = scores + causal_mask.to(dtype=scores.dtype)
attention = torch.softmax(scores, dim=-1)
attention_drop = F.dropout(attention, dropout_p)
output = torch.einsum('bhts,bshd->bthd', attention_drop , v)
return output.to(dtype=q.dtype)
def time_fwd_bwd(func, *args, **kwargs):
time_f, time_b = benchmark_fwd_bwd(func, *args, **kwargs)
return time_f[1].mean, time_b[1].mean
repeats = 30
device = 'cuda'
dtype = torch.float16
bs_seqlen_vals = [(32, 512), (16, 1024), (8, 2048), (4, 4096), (2, 8192), (1, 16384)]
causal_vals = [False, True]
headdim_vals = [64, 128]
dim = 2048
dropout_p = 0.0
methods = (["fa2_alibi", "torch"]
+ (["xformers"] if xops is not None else [])
+ ["sdpa"]
+ ["fa2_baseline"]
+ ["fa2_rotary"])
time_f = {}
time_b = {}
time_f_b = {}
speed_f = {}
speed_b = {}
speed_f_b = {}
for causal in causal_vals:
for headdim in headdim_vals:
for batch_size, seqlen in bs_seqlen_vals:
config = (causal, headdim, batch_size, seqlen)
nheads = dim // headdim
q, k, v = [torch.randn(batch_size, seqlen, nheads, headdim, device=device, dtype=dtype,
requires_grad=True) for _ in range(3)]
# alibi_slopes = torch.rand(batch_size, nheads, device=device, dtype=torch.float32) * 0.3
alibi_slopes = torch.rand(1, nheads, device=device, dtype=torch.float32) * 0.3
attn_bias = attn_bias_from_alibi_slopes(alibi_slopes, seqlen, seqlen, causal=causal).to(dtype)
attn_bias = repeat(attn_bias, "1 ... -> b ...", b=batch_size)
f, b = time_fwd_bwd(
flash_attn_func,
q, k, v,
dropout_p,
causal=causal,
# alibi_slopes=alibi_slopes,
alibi_slopes=None,
repeats=repeats,
verbose=False
)
time_f[config, "fa2_baseline"] = f
time_b[config, "fa2_baseline"] = b
q = q.detach().requires_grad_(True)
k = k.detach().requires_grad_(True)
v = v.detach().requires_grad_(True)
f, b = time_fwd_bwd(
flash_attn_func,
q, k, v,
dropout_p,
causal=causal,
alibi_slopes=rearrange(alibi_slopes, "1 h -> h"),
# alibi_slopes=None,
repeats=repeats,
verbose=False
)
time_f[config, "fa2_alibi"] = f
time_b[config, "fa2_alibi"] = b
try:
q = q.detach().requires_grad_(True)
k = k.detach().requires_grad_(True)
v = v.detach().requires_grad_(True)
f, b = time_fwd_bwd(
attention_pytorch,
q, k, v,
dropout_p,
causal=causal,
attn_bias=attn_bias,
repeats=repeats,
verbose=False
)
except: # Skip if OOM
f, b = float('nan'), float('nan')
time_f[config, "torch"] = f
time_b[config, "torch"] = b
# F.sdpa doesn't currently (torch 2.1) dispatch to flash-attn but just to be safe
with torch.backends.cuda.sdp_kernel(enable_flash=False):
q_pt = q.detach().requires_grad_(True).transpose(1, 2)
k_pt = k.detach().requires_grad_(True).transpose(1, 2)
v_pt = v.detach().requires_grad_(True).transpose(1, 2)
f, b = time_fwd_bwd(
F.scaled_dot_product_attention,
q_pt, k_pt, v_pt,
attn_mask=attn_bias,
dropout_p=dropout_p,
is_causal=causal,
repeats=repeats,
verbose=False
)
time_f[config, "sdpa"] = f
time_b[config, "sdpa"] = b
if xops is not None:
q = q.detach().requires_grad_(True)
k = k.detach().requires_grad_(True)
v = v.detach().requires_grad_(True)
if causal:
attn_bias_xops = xops.LowerTriangularMask().add_bias(attn_bias.expand(-1, -1, seqlen, -1).to(dtype=q.dtype))
# NotImplementedError: No operator found for `memory_efficient_attention_backward` with inputs:
# `flshattB@v2.3.6` is not supported because:
# attn_bias type is <class 'xformers.ops.fmha.attn_bias.LowerTriangularMaskWithTensorBias'>
# `cutlassB` is not supported because:
# attn_bias type is <class 'xformers.ops.fmha.attn_bias.LowerTriangularMaskWithTensorBias'>
attn_bias_xops = attn_bias_xops.materialize((batch_size, nheads, seqlen, seqlen), dtype=q.dtype, device=device)
else:
attn_bias_xops = attn_bias.to(dtype=q.dtype)
f, b = time_fwd_bwd(
xops.memory_efficient_attention,
q, k, v,
attn_bias_xops,
dropout_p,
repeats=repeats,
verbose=False
)
time_f[config, "xformers"] = f
time_b[config, "xformers"] = b
q = q.detach().requires_grad_(True)
k = k.detach().requires_grad_(True)
v = v.detach().requires_grad_(True)
cos, sin = generate_cos_sin(seqlen, headdim, device, dtype)
f, b = time_fwd_bwd(
flash_rotary,
q, k, v,
cos, sin,
causal,
repeats=repeats,
verbose=False
)
time_f[config, "fa2_rotary"] = f
time_b[config, "fa2_rotary"] = b
print(f"### causal={causal}, headdim={headdim}, batch_size={batch_size}, seqlen={seqlen} ###")
csv_output = ""
csv_output += f"{causal},{headdim},{batch_size},{seqlen},"
for method in methods:
time_f_b[config, method] = time_f[config, method] + time_b[config, method]
speed_f[config, method] = efficiency(
flops(batch_size, seqlen, headdim, nheads, causal, mode="fwd"),
time_f[config, method]
)
speed_b[config, method] = efficiency(
flops(batch_size, seqlen, headdim, nheads, causal, mode="bwd"),
time_b[config, method]
)
speed_f_b[config, method] = efficiency(
flops(batch_size, seqlen, headdim, nheads, causal, mode="fwd_bwd"),
time_f_b[config, method]
)
print(
f"{method} fwd: {speed_f[config, method]:.2f} TFLOPs/s, "
f"bwd: {speed_b[config, method]:.2f} TFLOPs/s, "
f"fwd + bwd: {speed_f_b[config, method]:.2f} TFLOPs/s"
)
csv_output += f"{speed_f[config, method]:.2f},{speed_b[config, method]:.2f},{speed_f_b[config, method]:.2f},"
print(csv_output)