|
|
|
import math |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@torch.jit.script |
|
def bias_gelu(y, bias): |
|
x = bias + y |
|
return (x * 0.5 * (1.0 + torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x)))).to(dtype=y.dtype) |
|
|
|
|
|
|
|
|
|
|
|
@torch.jit.script |
|
def bias_gelu_back(g, y, bias): |
|
"""Assume that y has shape (B, D) and bias has shape (D)""" |
|
x = bias + y |
|
tanh_out = torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x)) |
|
|
|
ff = 0.5 * x * ((1 - tanh_out * tanh_out) * (0.79788456 + 0.1070322243 * x * x)) + 0.5 * ( |
|
1 + tanh_out |
|
) |
|
grad_y = ff * g |
|
return grad_y.to(dtype=y.dtype), grad_y.sum(dim=(0), dtype=bias.dtype) |
|
|
|
|
|
class GeLUFunction(torch.autograd.Function): |
|
@staticmethod |
|
|
|
def forward(ctx, input, bias): |
|
ctx.save_for_backward(input, bias) |
|
return bias_gelu(input, bias) |
|
|
|
@staticmethod |
|
def backward(ctx, grad_output): |
|
input, bias = ctx.saved_tensors |
|
tmp = bias_gelu_back(grad_output, input, bias) |
|
return tmp, tmp |
|
|
|
|
|
bias_gelu_impl = GeLUFunction.apply |
|
|
|
|
|
|
|
|
|
@torch.jit.script |
|
def gelu_fwd(x): |
|
return (x * 0.5 * (1.0 + torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x)))).to(dtype=x.dtype) |
|
|
|
|
|
|
|
|
|
|
|
@torch.jit.script |
|
def gelu_bwd(g, x): |
|
tanh_out = torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x)) |
|
|
|
ff = 0.5 * x * ((1 - tanh_out * tanh_out) * (0.79788456 + 0.1070322243 * x * x)) + 0.5 * ( |
|
1 + tanh_out |
|
) |
|
return (ff * g).to(dtype=x.dtype) |
|
|
|
|
|
class FastGeLUFunction(torch.autograd.Function): |
|
@staticmethod |
|
|
|
def forward(ctx, input): |
|
ctx.save_for_backward(input) |
|
return gelu_fwd(input) |
|
|
|
@staticmethod |
|
def backward(ctx, grad_output): |
|
(input,) = ctx.saved_tensors |
|
tmp = gelu_bwd(grad_output, input) |
|
return tmp |
|
|
|
|
|
fast_gelu_impl = FastGeLUFunction.apply |
|
|
|
|
|
@torch.jit.script |
|
def relu_bwd(g, x): |
|
return torch.where(x >= 0, g, 0.0).to(dtype=x.dtype) |
|
|
|
|
|
@torch.jit.script |
|
def sqrelu_fwd(x): |
|
r = F.relu(x) |
|
return (r * r).to(dtype=x.dtype) |
|
|
|
|
|
@torch.jit.script |
|
def sqrelu_bwd(g, x): |
|
return (2.0 * g * F.relu(x)).to(dtype=x.dtype) |
|
|
|
|
|
swiglu_fwd_codestring = """ |
|
template <typename T> T swiglu_fwd(T x, T y) { |
|
return float(x) * float(y) / (1.0f + ::exp(-float(x))); |
|
} |
|
""" |
|
swiglu_bwd_codestring = """ |
|
template <typename T> T swiglu_bwd(T x, T y, T g, T& dx, T& dy) { |
|
float x_sigmoid = 1.0f / (1.0f + ::exp(-float(x))); |
|
dx = x_sigmoid * (1 + float(x) * (1.0f - x_sigmoid)) * float(g) * float(y); |
|
dy = float(x) * x_sigmoid * float(g); |
|
} |
|
""" |
|
swiglu_fwd = torch.cuda.jiterator._create_jit_fn(swiglu_fwd_codestring) |
|
swiglu_bwd = torch.cuda.jiterator._create_multi_output_jit_fn(swiglu_bwd_codestring, num_outputs=2) |
|
|
|
|
|
class SwiGLUFunction(torch.autograd.Function): |
|
|
|
@staticmethod |
|
def forward(ctx, x, y): |
|
ctx.save_for_backward(x, y) |
|
return swiglu_fwd(x, y) |
|
|
|
@staticmethod |
|
def backward(ctx, dout): |
|
x, y = ctx.saved_tensors |
|
return swiglu_bwd(x, y, dout) |
|
|
|
swiglu = SwiGLUFunction.apply |
|
|