theojolliffe commited on
Commit
895a28d
1 Parent(s): 2bb0be5

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +67 -0
README.md ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - rouge
7
+ model-index:
8
+ - name: bart-large-cnn-ing-extraction-e4
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # bart-large-cnn-ing-extraction-e4
16
+
17
+ This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on the None dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 2.6226
20
+ - Rouge1: 10.8186
21
+ - Rouge2: 4.3032
22
+ - Rougel: 10.7802
23
+ - Rougelsum: 10.7952
24
+ - Gen Len: 57.5739
25
+
26
+ ## Model description
27
+
28
+ More information needed
29
+
30
+ ## Intended uses & limitations
31
+
32
+ More information needed
33
+
34
+ ## Training and evaluation data
35
+
36
+ More information needed
37
+
38
+ ## Training procedure
39
+
40
+ ### Training hyperparameters
41
+
42
+ The following hyperparameters were used during training:
43
+ - learning_rate: 2e-05
44
+ - train_batch_size: 2
45
+ - eval_batch_size: 2
46
+ - seed: 42
47
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
48
+ - lr_scheduler_type: linear
49
+ - num_epochs: 4
50
+ - mixed_precision_training: Native AMP
51
+
52
+ ### Training results
53
+
54
+ | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
55
+ |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:|
56
+ | 0.6235 | 1.0 | 762 | 3.1458 | 14.9141 | 5.5712 | 14.7529 | 14.8292 | 57.6903 |
57
+ | 0.2435 | 2.0 | 1524 | 2.2255 | 6.4408 | 2.4546 | 6.4219 | 6.4393 | 57.2955 |
58
+ | 0.1467 | 3.0 | 2286 | 2.9673 | 9.9243 | 3.9008 | 9.932 | 9.9268 | 57.6506 |
59
+ | 0.0627 | 4.0 | 3048 | 2.6226 | 10.8186 | 4.3032 | 10.7802 | 10.7952 | 57.5739 |
60
+
61
+
62
+ ### Framework versions
63
+
64
+ - Transformers 4.28.0
65
+ - Pytorch 2.0.1+cu118
66
+ - Datasets 2.12.0
67
+ - Tokenizers 0.13.3