theojolliffe commited on
Commit
f174382
·
1 Parent(s): 2036a82

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +67 -0
README.md ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - rouge
7
+ model-index:
8
+ - name: bart-ingredients-extract
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # bart-ingredients-extract
16
+
17
+ This model is a fine-tuned version of [sshleifer/distilbart-xsum-12-6](https://huggingface.co/sshleifer/distilbart-xsum-12-6) on the None dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.3434
20
+ - Rouge1: 44.3464
21
+ - Rouge2: 25.67
22
+ - Rougel: 44.3032
23
+ - Rougelsum: 44.3007
24
+ - Gen Len: 16.2697
25
+
26
+ ## Model description
27
+
28
+ More information needed
29
+
30
+ ## Intended uses & limitations
31
+
32
+ More information needed
33
+
34
+ ## Training and evaluation data
35
+
36
+ More information needed
37
+
38
+ ## Training procedure
39
+
40
+ ### Training hyperparameters
41
+
42
+ The following hyperparameters were used during training:
43
+ - learning_rate: 2e-05
44
+ - train_batch_size: 2
45
+ - eval_batch_size: 2
46
+ - seed: 42
47
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
48
+ - lr_scheduler_type: linear
49
+ - num_epochs: 4
50
+ - mixed_precision_training: Native AMP
51
+
52
+ ### Training results
53
+
54
+ | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
55
+ |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
56
+ | 0.7151 | 1.0 | 1552 | 0.5275 | 53.7819 | 31.247 | 53.7202 | 53.7078 | 12.9069 |
57
+ | 0.5151 | 2.0 | 3104 | 0.4429 | 49.9951 | 28.9098 | 49.9357 | 49.9016 | 13.4797 |
58
+ | 0.4237 | 3.0 | 4656 | 0.3622 | 52.4925 | 31.4498 | 52.4645 | 52.4606 | 13.5396 |
59
+ | 0.3644 | 4.0 | 6208 | 0.3434 | 44.3464 | 25.67 | 44.3032 | 44.3007 | 16.2697 |
60
+
61
+
62
+ ### Framework versions
63
+
64
+ - Transformers 4.28.1
65
+ - Pytorch 2.0.0+cu118
66
+ - Datasets 2.11.0
67
+ - Tokenizers 0.13.3