theojolliffe
commited on
Commit
·
f174382
1
Parent(s):
2036a82
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- rouge
|
7 |
+
model-index:
|
8 |
+
- name: bart-ingredients-extract
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# bart-ingredients-extract
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [sshleifer/distilbart-xsum-12-6](https://huggingface.co/sshleifer/distilbart-xsum-12-6) on the None dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.3434
|
20 |
+
- Rouge1: 44.3464
|
21 |
+
- Rouge2: 25.67
|
22 |
+
- Rougel: 44.3032
|
23 |
+
- Rougelsum: 44.3007
|
24 |
+
- Gen Len: 16.2697
|
25 |
+
|
26 |
+
## Model description
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Intended uses & limitations
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training and evaluation data
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training procedure
|
39 |
+
|
40 |
+
### Training hyperparameters
|
41 |
+
|
42 |
+
The following hyperparameters were used during training:
|
43 |
+
- learning_rate: 2e-05
|
44 |
+
- train_batch_size: 2
|
45 |
+
- eval_batch_size: 2
|
46 |
+
- seed: 42
|
47 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
48 |
+
- lr_scheduler_type: linear
|
49 |
+
- num_epochs: 4
|
50 |
+
- mixed_precision_training: Native AMP
|
51 |
+
|
52 |
+
### Training results
|
53 |
+
|
54 |
+
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|
55 |
+
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
|
56 |
+
| 0.7151 | 1.0 | 1552 | 0.5275 | 53.7819 | 31.247 | 53.7202 | 53.7078 | 12.9069 |
|
57 |
+
| 0.5151 | 2.0 | 3104 | 0.4429 | 49.9951 | 28.9098 | 49.9357 | 49.9016 | 13.4797 |
|
58 |
+
| 0.4237 | 3.0 | 4656 | 0.3622 | 52.4925 | 31.4498 | 52.4645 | 52.4606 | 13.5396 |
|
59 |
+
| 0.3644 | 4.0 | 6208 | 0.3434 | 44.3464 | 25.67 | 44.3032 | 44.3007 | 16.2697 |
|
60 |
+
|
61 |
+
|
62 |
+
### Framework versions
|
63 |
+
|
64 |
+
- Transformers 4.28.1
|
65 |
+
- Pytorch 2.0.0+cu118
|
66 |
+
- Datasets 2.11.0
|
67 |
+
- Tokenizers 0.13.3
|