thejagstudio commited on
Commit
bc258c9
·
verified ·
1 Parent(s): 69cc72e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +57 -3
README.md CHANGED
@@ -1,3 +1,57 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: gpl-3.0
3
+ inference: false
4
+ tags:
5
+ - instance-segmentation
6
+ - computer-vision
7
+ - vision
8
+ - yolo
9
+ - yolov8
10
+ datasets:
11
+ - detection-datasets/coco
12
+ ---
13
+ ### How to use
14
+
15
+ - Install yolov8:
16
+
17
+ ```bash
18
+ pip install -U yolov8
19
+ ```
20
+
21
+ - Load model and perform prediction:
22
+
23
+ ```python
24
+ import yolov5
25
+ # load model
26
+ model = yolov5.load('fcakyon/yolov5n-v7.0')
27
+
28
+ # set model parameters
29
+ model.conf = 0.25 # NMS confidence threshold
30
+ model.iou = 0.45 # NMS IoU threshold
31
+ model.agnostic = False # NMS class-agnostic
32
+ model.multi_label = False # NMS multiple labels per box
33
+ model.max_det = 1000 # maximum number of detections per image
34
+ # set image
35
+ img = 'https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg'
36
+ # perform inference
37
+ results = model(img)
38
+ # inference with larger input size
39
+ results = model(img, size=640)
40
+ # inference with test time augmentation
41
+ results = model(img, augment=True)
42
+ # parse results
43
+ predictions = results.pred[0]
44
+ boxes = predictions[:, :4] # x1, y1, x2, y2
45
+ scores = predictions[:, 4]
46
+ categories = predictions[:, 5]
47
+ # show detection bounding boxes on image
48
+ results.show()
49
+ # save results into "results/" folder
50
+ results.save(save_dir='results/')
51
+ ```
52
+
53
+ - Finetune the model on your custom dataset:
54
+
55
+ ```bash
56
+ yolov5 train --img 640 --batch 16 --weights fcakyon/yolov5n-v7.0 --epochs 10 --device cuda:0
57
+ ```