Update README.md
Browse files
README.md
CHANGED
|
@@ -24,7 +24,7 @@ metrics:
|
|
| 24 |
model_type: text-to-sql
|
| 25 |
---
|
| 26 |
|
| 27 |
-
# OpenMRS NLP-
|
| 28 |
|
| 29 |
<div align="center">
|
| 30 |
|
|
@@ -137,7 +137,7 @@ from peft import PeftModel
|
|
| 137 |
|
| 138 |
# Load base model and tokenizer
|
| 139 |
base_model = "NumbersStation/nsql-350M"
|
| 140 |
-
adapter_model = "
|
| 141 |
|
| 142 |
tokenizer = AutoTokenizer.from_pretrained(base_model)
|
| 143 |
model = AutoModelForCausalLM.from_pretrained(base_model)
|
|
@@ -378,7 +378,7 @@ Estimated carbon footprint calculated using the [ML CO2 Impact Calculator](https
|
|
| 378 |
- **GPUs**: 20x NVIDIA RTX A5600
|
| 379 |
- **VRAM per GPU**: 68 GB
|
| 380 |
- **Total Compute**: 684 GB GPU memory
|
| 381 |
-
- **CPU**:
|
| 382 |
- **RAM**: 1360 GB DDR4
|
| 383 |
- **Storage**: 60 TB NVMe SSD
|
| 384 |
|
|
@@ -399,7 +399,7 @@ If you use this model in your research or applications, please cite:
|
|
| 399 |
|
| 400 |
```bibtex
|
| 401 |
@software{openmrs-nlp-sql,
|
| 402 |
-
author = {{
|
| 403 |
title = {OpenMRS NLP-to-SQL Model (Stage 2): NSQL-350M Fine-tuned for Electronic Medical Records},
|
| 404 |
year = {2025},
|
| 405 |
month = {October},
|
|
@@ -415,9 +415,9 @@ If you use this model in your research or applications, please cite:
|
|
| 415 |
year = {2023}
|
| 416 |
}
|
| 417 |
|
| 418 |
-
@misc{
|
| 419 |
title = {OpenMRS: Open Source Medical Record System},
|
| 420 |
-
author = {{
|
| 421 |
year = {2024},
|
| 422 |
howpublished = {\url{https://openmrs.org}},
|
| 423 |
note = {Open-source EHR platform for global health}
|
|
@@ -484,7 +484,7 @@ We welcome contributions! To contribute:
|
|
| 484 |
This model is released under the **Apache License 2.0**.
|
| 485 |
|
| 486 |
```
|
| 487 |
-
Copyright 2025
|
| 488 |
|
| 489 |
Licensed under the Apache License, Version 2.0 (the "License");
|
| 490 |
you may not use this file except in compliance with the License.
|
|
|
|
| 24 |
model_type: text-to-sql
|
| 25 |
---
|
| 26 |
|
| 27 |
+
# OpenMRS NLP-SQL Model (Stage 2)
|
| 28 |
|
| 29 |
<div align="center">
|
| 30 |
|
|
|
|
| 137 |
|
| 138 |
# Load base model and tokenizer
|
| 139 |
base_model = "NumbersStation/nsql-350M"
|
| 140 |
+
adapter_model = "thegeeksinfo/openmrs-nlp-ql" # Replace with actual path
|
| 141 |
|
| 142 |
tokenizer = AutoTokenizer.from_pretrained(base_model)
|
| 143 |
model = AutoModelForCausalLM.from_pretrained(base_model)
|
|
|
|
| 378 |
- **GPUs**: 20x NVIDIA RTX A5600
|
| 379 |
- **VRAM per GPU**: 68 GB
|
| 380 |
- **Total Compute**: 684 GB GPU memory
|
| 381 |
+
- **CPU**: 132-core AMD EPYC
|
| 382 |
- **RAM**: 1360 GB DDR4
|
| 383 |
- **Storage**: 60 TB NVMe SSD
|
| 384 |
|
|
|
|
| 399 |
|
| 400 |
```bibtex
|
| 401 |
@software{openmrs-nlp-sql,
|
| 402 |
+
author = {{thegeeksinfo AI Research Team}},
|
| 403 |
title = {OpenMRS NLP-to-SQL Model (Stage 2): NSQL-350M Fine-tuned for Electronic Medical Records},
|
| 404 |
year = {2025},
|
| 405 |
month = {October},
|
|
|
|
| 415 |
year = {2023}
|
| 416 |
}
|
| 417 |
|
| 418 |
+
@misc{thegeeksinfo2024,
|
| 419 |
title = {OpenMRS: Open Source Medical Record System},
|
| 420 |
+
author = {{thegeeksinfo}},
|
| 421 |
year = {2024},
|
| 422 |
howpublished = {\url{https://openmrs.org}},
|
| 423 |
note = {Open-source EHR platform for global health}
|
|
|
|
| 484 |
This model is released under the **Apache License 2.0**.
|
| 485 |
|
| 486 |
```
|
| 487 |
+
Copyright 2025 thegeeksinfo Community
|
| 488 |
|
| 489 |
Licensed under the Apache License, Version 2.0 (the "License");
|
| 490 |
you may not use this file except in compliance with the License.
|