lfqa / ask.py
theachyuttiwari's picture
Upload ask.py
288e608
import colorsys
import json
import re
import time
import nltk
import numpy as np
from nltk import tokenize
nltk.download('punkt')
from google.oauth2 import service_account
from google.cloud import texttospeech
from typing import Dict, Optional, List
import jwt
import requests
import streamlit as st
from sentence_transformers import SentenceTransformer, util, CrossEncoder
JWT_SECRET = st.secrets["api_secret"]
JWT_ALGORITHM = st.secrets["api_algorithm"]
INFERENCE_TOKEN = st.secrets["api_inference"]
CONTEXT_API_URL = st.secrets["api_context"]
LFQA_API_URL = st.secrets["api_lfqa"]
headers = {"Authorization": f"Bearer {INFERENCE_TOKEN}"}
API_URL = "https://api-inference.huggingface.co/models/vblagoje/bart_lfqa"
API_URL_TTS = "https://api-inference.huggingface.co/models/espnet/kan-bayashi_ljspeech_joint_finetune_conformer_fastspeech2_hifigan"
def api_inference_lfqa(model_input: str):
payload = {
"inputs": model_input,
"parameters": {
"truncation": "longest_first",
"min_length": st.session_state["min_length"],
"max_length": st.session_state["max_length"],
"do_sample": st.session_state["do_sample"],
"early_stopping": st.session_state["early_stopping"],
"num_beams": st.session_state["num_beams"],
"temperature": st.session_state["temperature"],
"top_k": None,
"top_p": None,
"no_repeat_ngram_size": 3,
"num_return_sequences": 1
},
"options": {
"wait_for_model": True
}
}
data = json.dumps(payload)
response = requests.request("POST", API_URL, headers=headers, data=data)
return json.loads(response.content.decode("utf-8"))
def inference_lfqa(model_input: str, header: dict):
payload = {
"model_input": model_input,
"parameters": {
"min_length": st.session_state["min_length"],
"max_length": st.session_state["max_length"],
"do_sample": st.session_state["do_sample"],
"early_stopping": st.session_state["early_stopping"],
"num_beams": st.session_state["num_beams"],
"temperature": st.session_state["temperature"],
"top_k": None,
"top_p": None,
"no_repeat_ngram_size": 3,
"num_return_sequences": 1
}
}
data = json.dumps(payload)
try:
response = requests.request("POST", LFQA_API_URL, headers=header, data=data)
if response.status_code == 200:
json_response = response.content.decode("utf-8")
result = json.loads(json_response)
else:
result = {"error": f"LFQA service unavailable, status code={response.status_code}"}
except requests.exceptions.RequestException as e:
result = {"error": e}
return result
def invoke_lfqa(service_backend: str, model_input: str, header: Optional[dict]):
if "HuggingFace" == service_backend:
inference_response = api_inference_lfqa(model_input)
else:
inference_response = inference_lfqa(model_input, header)
return inference_response
@st.cache(allow_output_mutation=True, show_spinner=False)
def hf_tts(text: str):
payload = {
"inputs": text,
"parameters": {
"vocoder_tag": "str_or_none(none)",
"threshold": 0.5,
"minlenratio": 0.0,
"maxlenratio": 10.0,
"use_att_constraint": False,
"backward_window": 1,
"forward_window": 3,
"speed_control_alpha": 1.0,
"noise_scale": 0.333,
"noise_scale_dur": 0.333
},
"options": {
"wait_for_model": True
}
}
data = json.dumps(payload)
response = requests.request("POST", API_URL_TTS, headers=headers, data=data)
return response.content
@st.cache(allow_output_mutation=True, show_spinner=False)
def google_tts(text: str, private_key_id: str, private_key: str, client_email: str):
config = {
"private_key_id": private_key_id,
"private_key": f"-----BEGIN PRIVATE KEY-----\n{private_key}\n-----END PRIVATE KEY-----\n",
"client_email": client_email,
"token_uri": "https://oauth2.googleapis.com/token",
}
credentials = service_account.Credentials.from_service_account_info(config)
client = texttospeech.TextToSpeechClient(credentials=credentials)
synthesis_input = texttospeech.SynthesisInput(text=text)
# Build the voice request, select the language code ("en-US") and the ssml
# voice gender ("neutral")
voice = texttospeech.VoiceSelectionParams(language_code="en-US",
ssml_gender=texttospeech.SsmlVoiceGender.NEUTRAL)
# Select the type of audio file you want returned
audio_config = texttospeech.AudioConfig(audio_encoding=texttospeech.AudioEncoding.MP3)
# Perform the text-to-speech request on the text input with the selected
# voice parameters and audio file type
response = client.synthesize_speech(input=synthesis_input, voice=voice, audio_config=audio_config)
return response
def request_context_passages(question, header):
try:
response = requests.request("GET", CONTEXT_API_URL + question, headers=header)
if response.status_code == 200:
json_response = response.content.decode("utf-8")
result = json.loads(json_response)
else:
result = {"error": f"Context passage service unavailable, status code={response.status_code}"}
except requests.exceptions.RequestException as e:
result = {"error": e}
return result
@st.cache(allow_output_mutation=True, show_spinner=False)
def get_sentence_transformer():
return SentenceTransformer('all-MiniLM-L6-v2')
@st.cache(allow_output_mutation=True, show_spinner=False)
def get_sentence_transformer_encoding(sentences):
model = get_sentence_transformer()
return model.encode([sentence for sentence in sentences], convert_to_tensor=True)
def sign_jwt() -> Dict[str, str]:
payload = {
"expires": time.time() + 6000
}
token = jwt.encode(payload, JWT_SECRET, algorithm=JWT_ALGORITHM)
return token
def extract_sentences_from_passages(passages):
sentences = []
for idx, node in enumerate(passages):
sentences.extend(tokenize.sent_tokenize(node["text"]))
return sentences
def similarity_color_picker(similarity: float):
value = int(similarity * 75)
rgb = colorsys.hsv_to_rgb(value / 300., 1.0, 1.0)
return [round(255 * x) for x in rgb]
def rgb_to_hex(rgb):
return '%02x%02x%02x' % tuple(rgb)
def similiarity_to_hex(similarity: float):
return rgb_to_hex(similarity_color_picker(similarity))
def rerank(question: str, passages: List[str], include_rank: int = 4) -> List[str]:
ce = CrossEncoder("cross-encoder/ms-marco-MiniLM-L-6-v2")
question_passage_combinations = [[question, p["text"]] for p in passages]
# Compute the similarity scores for these combinations
similarity_scores = ce.predict(question_passage_combinations)
# Sort the scores in decreasing order
sim_ranking_idx = np.flip(np.argsort(similarity_scores))
return [passages[rank_idx] for rank_idx in sim_ranking_idx[:include_rank]]
def answer_to_context_similarity(generated_answer, context_passages, topk=3):
context_sentences = extract_sentences_from_passages(context_passages)
context_sentences_e = get_sentence_transformer_encoding(context_sentences)
answer_sentences = tokenize.sent_tokenize(generated_answer)
answer_sentences_e = get_sentence_transformer_encoding(answer_sentences)
search_result = util.semantic_search(answer_sentences_e, context_sentences_e, top_k=topk)
result = []
for idx, r in enumerate(search_result):
context = []
for idx_c in range(topk):
context.append({"source": context_sentences[r[idx_c]["corpus_id"]], "score": r[idx_c]["score"]})
result.append({"answer": answer_sentences[idx], "context": context})
return result
def post_process_answer(generated_answer):
result = generated_answer
# detect sentence boundaries regex pattern
regex = r"([A-Z][a-z].*?[.:!?](?=$| [A-Z]))"
answer_sentences = tokenize.sent_tokenize(generated_answer)
# do we have truncated last sentence?
if len(answer_sentences) > len(re.findall(regex, generated_answer)):
drop_last_sentence = " ".join(s for s in answer_sentences[:-1])
result = drop_last_sentence
return result.strip()
def format_score(value: float, precision=2):
return f"{value:.{precision}f}"
@st.cache(allow_output_mutation=True, show_spinner=False)
def get_answer(question: str):
if not question:
return {}
resp: Dict[str, str] = {}
if question and len(question.split()) > 3:
header = {"Authorization": f"Bearer {sign_jwt()}"}
context_passages = request_context_passages(question, header)
if "error" in context_passages:
resp = context_passages
else:
context_passages = rerank(question, context_passages)
conditioned_context = "<P> " + " <P> ".join([d["text"] for d in context_passages])
model_input = f'question: {question} context: {conditioned_context}'
inference_response = invoke_lfqa(st.session_state["api_lfqa_selector"], model_input, header)
if "error" in inference_response:
resp = inference_response
else:
resp["context_passages"] = context_passages
resp["answer"] = post_process_answer(inference_response[0]["generated_text"])
else:
resp = {"error": f"A longer, more descriptive question will receive a better answer. '{question}' is too short."}
return resp
def app():
with open('style.css') as f:
st.markdown(f"<style>{f.read()}</style>", unsafe_allow_html=True)
footer = """
<div class="footer-custom">
Streamlit app - <a href="https://www.linkedin.com/in/danijel-petkovic-573309144/" target="_blank">Danijel Petkovic</a> |
LFQA/DPR models - <a href="https://www.linkedin.com/in/blagojevicvladimir/" target="_blank">Vladimir Blagojevic</a> |
Guidance & Feedback - <a href="https://yjernite.github.io/" target="_blank">Yacine Jernite</a> |
<a href="https://towardsdatascience.com/long-form-qa-beyond-eli5-an-updated-dataset-and-approach-319cb841aabb" target="_blank">Blog</a>
</div>
"""
st.markdown(footer, unsafe_allow_html=True)
st.title('Wikipedia Assistant')
st.header('We are migrating to new backend infrastructure. ETA - 15.6.2022')
#question = st.text_input(
# label='Ask Wikipedia an open-ended question below; for example, "Why do airplanes leave contrails in the sky?"')
question = ""
spinner = st.empty()
if question !="":
spinner.markdown(
f"""
<div class="loader-wrapper">
<div class="loader">
</div>
<p>Generating answer for: <b>{question}</b></p>
</div>
<label class="loader-note">Answer generation may take up to 20 sec. Please stand by.</label>
""",
unsafe_allow_html=True,
)
question_response = get_answer(question)
if question_response:
if "error" in question_response:
st.warning(question_response["error"])
else:
spinner.markdown(f"")
generated_answer = question_response["answer"]
context_passages = question_response["context_passages"]
sentence_similarity = answer_to_context_similarity(generated_answer, context_passages, topk=3)
sentences = "<div class='sentence-wrapper'>"
for item in sentence_similarity:
sentences += '<span>'
score = item["context"][0]["score"]
support_sentence = item["context"][0]["source"]
sentences += "".join([
f' {item["answer"]}',
f'<span style="background-color: #{similiarity_to_hex(score)}" class="tooltip">',
f'{format_score(score, precision=1)}',
f'<span class="tooltiptext"><b>Wikipedia source</b><br><br> {support_sentence} <br><br>Similarity: {format_score(score)}</span>'
])
sentences += '</span>'
sentences += '</span>'
st.markdown(sentences, unsafe_allow_html=True)
with st.spinner("Generating audio..."):
if st.session_state["tts"] == "HuggingFace":
audio_file = hf_tts(generated_answer)
with open("out.flac", "wb") as f:
f.write(audio_file)
else:
audio_file = google_tts(generated_answer, st.secrets["private_key_id"],
st.secrets["private_key"], st.secrets["client_email"])
with open("out.mp3", "wb") as f:
f.write(audio_file.audio_content)
audio_file = "out.flac" if st.session_state["tts"] == "HuggingFace" else "out.mp3"
st.audio(audio_file)
st.markdown("""<hr></hr>""", unsafe_allow_html=True)
model = get_sentence_transformer()
col1, col2 = st.columns(2)
with col1:
st.subheader("Context")
with col2:
selection = st.selectbox(
label="",
options=('Paragraphs', 'Sentences', 'Answer Similarity'),
help="Context represents Wikipedia passages used to generate the answer")
question_e = model.encode(question, convert_to_tensor=True)
if selection == "Paragraphs":
sentences = extract_sentences_from_passages(context_passages)
context_e = get_sentence_transformer_encoding(sentences)
scores = util.cos_sim(question_e.repeat(context_e.shape[0], 1), context_e)
similarity_scores = scores[0].squeeze().tolist()
for idx, node in enumerate(context_passages):
node["answer_similarity"] = "{0:.2f}".format(similarity_scores[idx])
context_passages = sorted(context_passages, key=lambda x: x["answer_similarity"], reverse=True)
st.json(context_passages)
elif selection == "Sentences":
sentences = extract_sentences_from_passages(context_passages)
sentences_e = get_sentence_transformer_encoding(sentences)
scores = util.cos_sim(question_e.repeat(sentences_e.shape[0], 1), sentences_e)
sentence_similarity_scores = scores[0].squeeze().tolist()
result = []
for idx, sentence in enumerate(sentences):
result.append(
{"text": sentence, "answer_similarity": "{0:.2f}".format(sentence_similarity_scores[idx])})
context_sentences = json.dumps(sorted(result, key=lambda x: x["answer_similarity"], reverse=True))
st.json(context_sentences)
else:
st.json(sentence_similarity)