|
from abc import ABCMeta |
|
import numpy as np |
|
import torch |
|
from transformers.pytorch_utils import nn |
|
import torch.nn.functional as F |
|
from src.configuration import BertABSAConfig |
|
from transformers import BertModel, BertForSequenceClassification, PreTrainedModel |
|
from transformers.modeling_outputs import SequenceClassifierOutput |
|
|
|
|
|
class BertBaseForSequenceClassification(PreTrainedModel, metaclass=ABCMeta): |
|
config_class = BertABSAConfig |
|
|
|
def __init__(self, config): |
|
super(BertBaseForSequenceClassification, self).__init__(config) |
|
self.num_classes = config.num_classes |
|
self.embed_dim = config.embed_dim |
|
self.dropout = nn.Dropout(config.dropout_rate) |
|
|
|
self.bert = BertForSequenceClassification.from_pretrained('bert-base-uncased', |
|
output_hidden_states=False, |
|
output_attentions=False, |
|
num_labels=self.num_classes) |
|
print("BERT Model Loaded") |
|
|
|
def forward(self, input_ids, attention_mask, token_type_ids, labels=None): |
|
out = self.bert(input_ids=input_ids, attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, labels=labels) |
|
return out |
|
|
|
|
|
class BertLSTMForSequenceClassification(PreTrainedModel, metaclass=ABCMeta): |
|
config_class = BertABSAConfig |
|
|
|
def __init__(self, config): |
|
super(BertLSTMForSequenceClassification, self).__init__(config) |
|
self.num_classes = config.num_classes |
|
self.embed_dim = config.embed_dim |
|
self.num_layers = config.num_layers |
|
self.hidden_dim_lstm = config.hidden_dim_lstm |
|
self.dropout = nn.Dropout(config.dropout_rate) |
|
|
|
self.bert = BertModel.from_pretrained('bert-base-uncased', |
|
output_hidden_states=True, |
|
output_attentions=False) |
|
print("BERT Model Loaded") |
|
self.lstm = nn.LSTM(self.embed_dim, self.hidden_dim_lstm, batch_first=True) |
|
self.fc = nn.Linear(self.hidden_dim_lstm, self.num_classes) |
|
|
|
def forward(self, input_ids, attention_mask, token_type_ids, labels=None): |
|
bert_output = self.bert(input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids) |
|
hidden_states = bert_output["hidden_states"] |
|
|
|
hidden_states = torch.stack([hidden_states[layer_i][:, 0].squeeze() |
|
for layer_i in range(0, self.num_layers)], dim=-1) |
|
hidden_states = hidden_states.view(-1, self.num_layers, self.embed_dim) |
|
out, _ = self.lstm(hidden_states, None) |
|
out = self.dropout(out[:, -1, :]) |
|
logits = self.fc(out) |
|
loss = None |
|
if labels is not None: |
|
loss = F.cross_entropy(logits, labels) |
|
out = SequenceClassifierOutput( |
|
loss=loss, |
|
logits=logits, |
|
hidden_states=bert_output.hidden_states, |
|
attentions=bert_output.attentions, |
|
) |
|
return out |
|
|
|
|
|
class BertAttentionForSequenceClassification(PreTrainedModel, metaclass=ABCMeta): |
|
config_class = BertABSAConfig |
|
|
|
def __init__(self, config): |
|
super(BertAttentionForSequenceClassification, self).__init__(config) |
|
self.num_classes = config.num_classes |
|
self.embed_dim = config.embed_dim |
|
self.num_layers = config.num_layers |
|
self.fc_hidden = config.fc_hidden |
|
self.dropout = nn.Dropout(config.dropout_rate) |
|
|
|
self.bert = BertModel.from_pretrained('bert-base-uncased', |
|
output_hidden_states=True, |
|
output_attentions=False) |
|
print("BERT Model Loaded") |
|
|
|
q_t = np.random.normal(loc=0.0, scale=0.1, size=(1, self.embed_dim)) |
|
self.q = nn.Parameter(torch.from_numpy(q_t)).float().to(self.device) |
|
w_ht = np.random.normal(loc=0.0, scale=0.1, size=(self.embed_dim, self.fc_hidden)) |
|
self.w_h = nn.Parameter(torch.from_numpy(w_ht)).float().to(self.device) |
|
|
|
self.fc = nn.Linear(self.fc_hidden, self.num_classes) |
|
|
|
def forward(self, input_ids, attention_mask, token_type_ids, labels=None): |
|
bert_output = self.bert(input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids) |
|
hidden_states = bert_output["hidden_states"] |
|
|
|
hidden_states = torch.stack([hidden_states[layer_i][:, 0].squeeze() |
|
for layer_i in range(0, self.num_layers)], dim=-1) |
|
hidden_states = hidden_states.view(-1, self.num_layers, self.embed_dim) |
|
out = self.attention(hidden_states) |
|
out = self.dropout(out) |
|
logits = self.fc(out) |
|
loss = None |
|
if labels is not None: |
|
loss = F.cross_entropy(logits, labels) |
|
out = SequenceClassifierOutput( |
|
loss=loss, |
|
logits=logits, |
|
hidden_states=bert_output.hidden_states, |
|
attentions=bert_output.attentions, |
|
) |
|
return out |
|
|
|
def attention(self, h): |
|
v = torch.matmul(self.q, h.transpose(-2, -1)).squeeze(1) |
|
v = F.softmax(v, -1) |
|
v_temp = torch.matmul(v.unsqueeze(1), h).transpose(-2, -1) |
|
v = torch.matmul(self.w_h.transpose(1, 0), v_temp).squeeze(2) |
|
return v |
|
|