andkos commited on
Commit
d29f6e2
1 Parent(s): a19f33d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +2 -2
README.md CHANGED
@@ -34,7 +34,7 @@ Then you can use the model like this:
34
 
35
  ```python
36
  from sentence_transformers import SentenceTransformer
37
- sentences = ["This is an example sentence", "Each sentence is converted"]
38
 
39
  model = SentenceTransformer('textgain/allnli-GroNLP-bert-base-dutch-cased')
40
  embeddings = model.encode(sentences)
@@ -59,7 +59,7 @@ def mean_pooling(model_output, attention_mask):
59
 
60
 
61
  # Sentences we want sentence embeddings for
62
- sentences = ['This is an example sentence', 'Each sentence is converted']
63
 
64
  # Load model from HuggingFace Hub
65
  tokenizer = AutoTokenizer.from_pretrained('textgain/allnli-GroNLP-bert-base-dutch-cased')
 
34
 
35
  ```python
36
  from sentence_transformers import SentenceTransformer
37
+ sentences = ["De kat slaapt op het bed.", "De poes rust op het matras."]
38
 
39
  model = SentenceTransformer('textgain/allnli-GroNLP-bert-base-dutch-cased')
40
  embeddings = model.encode(sentences)
 
59
 
60
 
61
  # Sentences we want sentence embeddings for
62
+ sentences = ["De kat slaapt op het bed.", "De poes rust op het matras."]
63
 
64
  # Load model from HuggingFace Hub
65
  tokenizer = AutoTokenizer.from_pretrained('textgain/allnli-GroNLP-bert-base-dutch-cased')