Update README.md
Browse files
README.md
CHANGED
@@ -34,7 +34,7 @@ Then you can use the model like this:
|
|
34 |
|
35 |
```python
|
36 |
from sentence_transformers import SentenceTransformer
|
37 |
-
sentences = ["
|
38 |
|
39 |
model = SentenceTransformer('textgain/allnli-GroNLP-bert-base-dutch-cased')
|
40 |
embeddings = model.encode(sentences)
|
@@ -59,7 +59,7 @@ def mean_pooling(model_output, attention_mask):
|
|
59 |
|
60 |
|
61 |
# Sentences we want sentence embeddings for
|
62 |
-
sentences = [
|
63 |
|
64 |
# Load model from HuggingFace Hub
|
65 |
tokenizer = AutoTokenizer.from_pretrained('textgain/allnli-GroNLP-bert-base-dutch-cased')
|
|
|
34 |
|
35 |
```python
|
36 |
from sentence_transformers import SentenceTransformer
|
37 |
+
sentences = ["De kat slaapt op het bed.", "De poes rust op het matras."]
|
38 |
|
39 |
model = SentenceTransformer('textgain/allnli-GroNLP-bert-base-dutch-cased')
|
40 |
embeddings = model.encode(sentences)
|
|
|
59 |
|
60 |
|
61 |
# Sentences we want sentence embeddings for
|
62 |
+
sentences = ["De kat slaapt op het bed.", "De poes rust op het matras."]
|
63 |
|
64 |
# Load model from HuggingFace Hub
|
65 |
tokenizer = AutoTokenizer.from_pretrained('textgain/allnli-GroNLP-bert-base-dutch-cased')
|