Add new SentenceTransformer model.
Browse files- 1_Pooling/config.json +10 -0
- README.md +787 -0
- config.json +32 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +57 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 1024,
|
3 |
+
"pooling_mode_cls_token": true,
|
4 |
+
"pooling_mode_mean_tokens": false,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,787 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: BAAI/bge-large-en-v1.5
|
3 |
+
library_name: sentence-transformers
|
4 |
+
metrics:
|
5 |
+
- cosine_accuracy@1
|
6 |
+
- cosine_accuracy@3
|
7 |
+
- cosine_accuracy@5
|
8 |
+
- cosine_accuracy@10
|
9 |
+
- cosine_precision@1
|
10 |
+
- cosine_precision@3
|
11 |
+
- cosine_precision@5
|
12 |
+
- cosine_precision@10
|
13 |
+
- cosine_recall@1
|
14 |
+
- cosine_recall@3
|
15 |
+
- cosine_recall@5
|
16 |
+
- cosine_recall@10
|
17 |
+
- cosine_ndcg@10
|
18 |
+
- cosine_mrr@10
|
19 |
+
- cosine_map@100
|
20 |
+
pipeline_tag: sentence-similarity
|
21 |
+
tags:
|
22 |
+
- sentence-transformers
|
23 |
+
- sentence-similarity
|
24 |
+
- feature-extraction
|
25 |
+
- generated_from_trainer
|
26 |
+
- dataset_size:1024
|
27 |
+
- loss:MultipleNegativesRankingLoss
|
28 |
+
widget:
|
29 |
+
- source_sentence: After rescue, survivors may require hospital treatment. This must
|
30 |
+
be provided as quickly as possible. The SMC should consider having ambulance and
|
31 |
+
hospital facilities ready.
|
32 |
+
sentences:
|
33 |
+
- What should the SMC consider having ready after a rescue?
|
34 |
+
- What is critical for mass rescue operations?
|
35 |
+
- What can computer programs do to relieve the search planner of computational burden?
|
36 |
+
- source_sentence: SMCs conduct communication searches when facts are needed to supplement
|
37 |
+
initially reported information. Efforts are continued to contact the craft, to
|
38 |
+
find out more about a possible distress situation, and to prepare for or to avoid
|
39 |
+
a search effort. Section 3.5 has more information on communication searches.MEDICO
|
40 |
+
Communications
|
41 |
+
sentences:
|
42 |
+
- What is generally produced by dead-reckoning navigation alone for search aircraft?
|
43 |
+
- What should be the widths of rectangular areas to be covered with a PS pattern
|
44 |
+
and the lengths of rectangular areas to be covered with a CS pattern?
|
45 |
+
- What is the purpose of SMCs conducting communication searches?
|
46 |
+
- source_sentence: 'SAR facilities include designated SRUs and other resources which
|
47 |
+
can be used to conduct or support SAR operations. An SRU is a unit composed of
|
48 |
+
trained personnel and provided with equipment suitable for the expeditious and
|
49 |
+
efficient conduct of search and rescue. An SRU can be an air, maritime, or land-based
|
50 |
+
facility. Facilities selected as SRUs should be able to reach the scene of distress
|
51 |
+
quickly and, in particular, be suitable for one or more of the following operations:–
|
52 |
+
providing assistance to prevent or reduce the severity of accidents and the hardship
|
53 |
+
of survivors, e.g., escorting an aircraft, standing by a sinking vessel;– conducting
|
54 |
+
a search;– delivering supplies and survival equipment to the scene;– rescuing
|
55 |
+
survivors;– providing food, medical or other initial needs of survivors; and–
|
56 |
+
delivering the survivors to a place of safety. '
|
57 |
+
sentences:
|
58 |
+
- What are the types of SAR facilities that can be used to conduct or support SAR
|
59 |
+
operations?
|
60 |
+
- What is the scenario in which a simulated communication search is carried out
|
61 |
+
and an air search is planned?
|
62 |
+
- What is discussed in detail in various other places in this Manual?
|
63 |
+
- source_sentence: Support facilities enable the operational response resources (e.g.,
|
64 |
+
the RCC and SRUs) to provide the SAR services. Without the supporting resources,
|
65 |
+
the operational resources cannot sustain effective operations. There is a wide
|
66 |
+
range of support facilities and services, which include the following:Training
|
67 |
+
facilities Facility maintenanceCommunications facilities Management functionsNavigation
|
68 |
+
systems Research and developmentSAR data providers (SDPs) PlanningMedical facilities
|
69 |
+
ExercisesAircraft landing fields Refuelling servicesVoluntary services (e.g.,
|
70 |
+
Red Cross) Critical incident stress counsellors Computer resources
|
71 |
+
sentences:
|
72 |
+
- How many ways are there to train SAR specialists and teams?
|
73 |
+
- What types of support facilities are mentioned in the context?
|
74 |
+
- What is the duration of a prolonged blast?
|
75 |
+
- source_sentence: 'Sound funding decisions arise out of accurate assessments made
|
76 |
+
of the SAR system. To measure the performance or effectiveness of a SAR system
|
77 |
+
usually requires collecting information or statistics and establishing agreed-upon
|
78 |
+
goals. All pertinent information should be collected, including where the system
|
79 |
+
failed to perform as it should have; failures and successes provide valuable information
|
80 |
+
in assessing effectiveness and determining means to improve. '
|
81 |
+
sentences:
|
82 |
+
- What is required to measure the performance or effectiveness of a SAR system?
|
83 |
+
- What is the purpose of having an SRR?
|
84 |
+
- What is the effect of decreasing track spacing on the area that can be searched?
|
85 |
+
model-index:
|
86 |
+
- name: SentenceTransformer based on BAAI/bge-large-en-v1.5
|
87 |
+
results:
|
88 |
+
- task:
|
89 |
+
type: information-retrieval
|
90 |
+
name: Information Retrieval
|
91 |
+
dataset:
|
92 |
+
name: dim 768
|
93 |
+
type: dim_768
|
94 |
+
metrics:
|
95 |
+
- type: cosine_accuracy@1
|
96 |
+
value: 0.7719298245614035
|
97 |
+
name: Cosine Accuracy@1
|
98 |
+
- type: cosine_accuracy@3
|
99 |
+
value: 0.9298245614035088
|
100 |
+
name: Cosine Accuracy@3
|
101 |
+
- type: cosine_accuracy@5
|
102 |
+
value: 0.956140350877193
|
103 |
+
name: Cosine Accuracy@5
|
104 |
+
- type: cosine_accuracy@10
|
105 |
+
value: 1.0
|
106 |
+
name: Cosine Accuracy@10
|
107 |
+
- type: cosine_precision@1
|
108 |
+
value: 0.7719298245614035
|
109 |
+
name: Cosine Precision@1
|
110 |
+
- type: cosine_precision@3
|
111 |
+
value: 0.3099415204678363
|
112 |
+
name: Cosine Precision@3
|
113 |
+
- type: cosine_precision@5
|
114 |
+
value: 0.1912280701754386
|
115 |
+
name: Cosine Precision@5
|
116 |
+
- type: cosine_precision@10
|
117 |
+
value: 0.1
|
118 |
+
name: Cosine Precision@10
|
119 |
+
- type: cosine_recall@1
|
120 |
+
value: 0.7719298245614035
|
121 |
+
name: Cosine Recall@1
|
122 |
+
- type: cosine_recall@3
|
123 |
+
value: 0.9298245614035088
|
124 |
+
name: Cosine Recall@3
|
125 |
+
- type: cosine_recall@5
|
126 |
+
value: 0.956140350877193
|
127 |
+
name: Cosine Recall@5
|
128 |
+
- type: cosine_recall@10
|
129 |
+
value: 1.0
|
130 |
+
name: Cosine Recall@10
|
131 |
+
- type: cosine_ndcg@10
|
132 |
+
value: 0.8884520476480379
|
133 |
+
name: Cosine Ndcg@10
|
134 |
+
- type: cosine_mrr@10
|
135 |
+
value: 0.8524470899470901
|
136 |
+
name: Cosine Mrr@10
|
137 |
+
- type: cosine_map@100
|
138 |
+
value: 0.85244708994709
|
139 |
+
name: Cosine Map@100
|
140 |
+
- task:
|
141 |
+
type: information-retrieval
|
142 |
+
name: Information Retrieval
|
143 |
+
dataset:
|
144 |
+
name: dim 512
|
145 |
+
type: dim_512
|
146 |
+
metrics:
|
147 |
+
- type: cosine_accuracy@1
|
148 |
+
value: 0.7543859649122807
|
149 |
+
name: Cosine Accuracy@1
|
150 |
+
- type: cosine_accuracy@3
|
151 |
+
value: 0.9122807017543859
|
152 |
+
name: Cosine Accuracy@3
|
153 |
+
- type: cosine_accuracy@5
|
154 |
+
value: 0.956140350877193
|
155 |
+
name: Cosine Accuracy@5
|
156 |
+
- type: cosine_accuracy@10
|
157 |
+
value: 0.9912280701754386
|
158 |
+
name: Cosine Accuracy@10
|
159 |
+
- type: cosine_precision@1
|
160 |
+
value: 0.7543859649122807
|
161 |
+
name: Cosine Precision@1
|
162 |
+
- type: cosine_precision@3
|
163 |
+
value: 0.304093567251462
|
164 |
+
name: Cosine Precision@3
|
165 |
+
- type: cosine_precision@5
|
166 |
+
value: 0.1912280701754386
|
167 |
+
name: Cosine Precision@5
|
168 |
+
- type: cosine_precision@10
|
169 |
+
value: 0.09912280701754386
|
170 |
+
name: Cosine Precision@10
|
171 |
+
- type: cosine_recall@1
|
172 |
+
value: 0.7543859649122807
|
173 |
+
name: Cosine Recall@1
|
174 |
+
- type: cosine_recall@3
|
175 |
+
value: 0.9122807017543859
|
176 |
+
name: Cosine Recall@3
|
177 |
+
- type: cosine_recall@5
|
178 |
+
value: 0.956140350877193
|
179 |
+
name: Cosine Recall@5
|
180 |
+
- type: cosine_recall@10
|
181 |
+
value: 0.9912280701754386
|
182 |
+
name: Cosine Recall@10
|
183 |
+
- type: cosine_ndcg@10
|
184 |
+
value: 0.8791120820747885
|
185 |
+
name: Cosine Ndcg@10
|
186 |
+
- type: cosine_mrr@10
|
187 |
+
value: 0.8425438596491228
|
188 |
+
name: Cosine Mrr@10
|
189 |
+
- type: cosine_map@100
|
190 |
+
value: 0.8431704260651629
|
191 |
+
name: Cosine Map@100
|
192 |
+
- task:
|
193 |
+
type: information-retrieval
|
194 |
+
name: Information Retrieval
|
195 |
+
dataset:
|
196 |
+
name: dim 256
|
197 |
+
type: dim_256
|
198 |
+
metrics:
|
199 |
+
- type: cosine_accuracy@1
|
200 |
+
value: 0.7456140350877193
|
201 |
+
name: Cosine Accuracy@1
|
202 |
+
- type: cosine_accuracy@3
|
203 |
+
value: 0.8947368421052632
|
204 |
+
name: Cosine Accuracy@3
|
205 |
+
- type: cosine_accuracy@5
|
206 |
+
value: 0.9385964912280702
|
207 |
+
name: Cosine Accuracy@5
|
208 |
+
- type: cosine_accuracy@10
|
209 |
+
value: 0.9649122807017544
|
210 |
+
name: Cosine Accuracy@10
|
211 |
+
- type: cosine_precision@1
|
212 |
+
value: 0.7456140350877193
|
213 |
+
name: Cosine Precision@1
|
214 |
+
- type: cosine_precision@3
|
215 |
+
value: 0.2982456140350877
|
216 |
+
name: Cosine Precision@3
|
217 |
+
- type: cosine_precision@5
|
218 |
+
value: 0.18771929824561406
|
219 |
+
name: Cosine Precision@5
|
220 |
+
- type: cosine_precision@10
|
221 |
+
value: 0.09649122807017543
|
222 |
+
name: Cosine Precision@10
|
223 |
+
- type: cosine_recall@1
|
224 |
+
value: 0.7456140350877193
|
225 |
+
name: Cosine Recall@1
|
226 |
+
- type: cosine_recall@3
|
227 |
+
value: 0.8947368421052632
|
228 |
+
name: Cosine Recall@3
|
229 |
+
- type: cosine_recall@5
|
230 |
+
value: 0.9385964912280702
|
231 |
+
name: Cosine Recall@5
|
232 |
+
- type: cosine_recall@10
|
233 |
+
value: 0.9649122807017544
|
234 |
+
name: Cosine Recall@10
|
235 |
+
- type: cosine_ndcg@10
|
236 |
+
value: 0.8623224236283672
|
237 |
+
name: Cosine Ndcg@10
|
238 |
+
- type: cosine_mrr@10
|
239 |
+
value: 0.8287628794207742
|
240 |
+
name: Cosine Mrr@10
|
241 |
+
- type: cosine_map@100
|
242 |
+
value: 0.8310819942011893
|
243 |
+
name: Cosine Map@100
|
244 |
+
- task:
|
245 |
+
type: information-retrieval
|
246 |
+
name: Information Retrieval
|
247 |
+
dataset:
|
248 |
+
name: dim 128
|
249 |
+
type: dim_128
|
250 |
+
metrics:
|
251 |
+
- type: cosine_accuracy@1
|
252 |
+
value: 0.7017543859649122
|
253 |
+
name: Cosine Accuracy@1
|
254 |
+
- type: cosine_accuracy@3
|
255 |
+
value: 0.8245614035087719
|
256 |
+
name: Cosine Accuracy@3
|
257 |
+
- type: cosine_accuracy@5
|
258 |
+
value: 0.8771929824561403
|
259 |
+
name: Cosine Accuracy@5
|
260 |
+
- type: cosine_accuracy@10
|
261 |
+
value: 0.9385964912280702
|
262 |
+
name: Cosine Accuracy@10
|
263 |
+
- type: cosine_precision@1
|
264 |
+
value: 0.7017543859649122
|
265 |
+
name: Cosine Precision@1
|
266 |
+
- type: cosine_precision@3
|
267 |
+
value: 0.27485380116959063
|
268 |
+
name: Cosine Precision@3
|
269 |
+
- type: cosine_precision@5
|
270 |
+
value: 0.17543859649122803
|
271 |
+
name: Cosine Precision@5
|
272 |
+
- type: cosine_precision@10
|
273 |
+
value: 0.09385964912280703
|
274 |
+
name: Cosine Precision@10
|
275 |
+
- type: cosine_recall@1
|
276 |
+
value: 0.7017543859649122
|
277 |
+
name: Cosine Recall@1
|
278 |
+
- type: cosine_recall@3
|
279 |
+
value: 0.8245614035087719
|
280 |
+
name: Cosine Recall@3
|
281 |
+
- type: cosine_recall@5
|
282 |
+
value: 0.8771929824561403
|
283 |
+
name: Cosine Recall@5
|
284 |
+
- type: cosine_recall@10
|
285 |
+
value: 0.9385964912280702
|
286 |
+
name: Cosine Recall@10
|
287 |
+
- type: cosine_ndcg@10
|
288 |
+
value: 0.8146917044508328
|
289 |
+
name: Cosine Ndcg@10
|
290 |
+
- type: cosine_mrr@10
|
291 |
+
value: 0.7757031467557786
|
292 |
+
name: Cosine Mrr@10
|
293 |
+
- type: cosine_map@100
|
294 |
+
value: 0.7788889950899075
|
295 |
+
name: Cosine Map@100
|
296 |
+
- task:
|
297 |
+
type: information-retrieval
|
298 |
+
name: Information Retrieval
|
299 |
+
dataset:
|
300 |
+
name: dim 64
|
301 |
+
type: dim_64
|
302 |
+
metrics:
|
303 |
+
- type: cosine_accuracy@1
|
304 |
+
value: 0.6228070175438597
|
305 |
+
name: Cosine Accuracy@1
|
306 |
+
- type: cosine_accuracy@3
|
307 |
+
value: 0.7543859649122807
|
308 |
+
name: Cosine Accuracy@3
|
309 |
+
- type: cosine_accuracy@5
|
310 |
+
value: 0.7894736842105263
|
311 |
+
name: Cosine Accuracy@5
|
312 |
+
- type: cosine_accuracy@10
|
313 |
+
value: 0.8596491228070176
|
314 |
+
name: Cosine Accuracy@10
|
315 |
+
- type: cosine_precision@1
|
316 |
+
value: 0.6228070175438597
|
317 |
+
name: Cosine Precision@1
|
318 |
+
- type: cosine_precision@3
|
319 |
+
value: 0.25146198830409355
|
320 |
+
name: Cosine Precision@3
|
321 |
+
- type: cosine_precision@5
|
322 |
+
value: 0.15789473684210523
|
323 |
+
name: Cosine Precision@5
|
324 |
+
- type: cosine_precision@10
|
325 |
+
value: 0.08596491228070174
|
326 |
+
name: Cosine Precision@10
|
327 |
+
- type: cosine_recall@1
|
328 |
+
value: 0.6228070175438597
|
329 |
+
name: Cosine Recall@1
|
330 |
+
- type: cosine_recall@3
|
331 |
+
value: 0.7543859649122807
|
332 |
+
name: Cosine Recall@3
|
333 |
+
- type: cosine_recall@5
|
334 |
+
value: 0.7894736842105263
|
335 |
+
name: Cosine Recall@5
|
336 |
+
- type: cosine_recall@10
|
337 |
+
value: 0.8596491228070176
|
338 |
+
name: Cosine Recall@10
|
339 |
+
- type: cosine_ndcg@10
|
340 |
+
value: 0.7406737402395112
|
341 |
+
name: Cosine Ndcg@10
|
342 |
+
- type: cosine_mrr@10
|
343 |
+
value: 0.703104984683932
|
344 |
+
name: Cosine Mrr@10
|
345 |
+
- type: cosine_map@100
|
346 |
+
value: 0.71092932980045
|
347 |
+
name: Cosine Map@100
|
348 |
+
---
|
349 |
+
|
350 |
+
# SentenceTransformer based on BAAI/bge-large-en-v1.5
|
351 |
+
|
352 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) on the json dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
353 |
+
|
354 |
+
## Model Details
|
355 |
+
|
356 |
+
### Model Description
|
357 |
+
- **Model Type:** Sentence Transformer
|
358 |
+
- **Base model:** [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) <!-- at revision d4aa6901d3a41ba39fb536a557fa166f842b0e09 -->
|
359 |
+
- **Maximum Sequence Length:** 512 tokens
|
360 |
+
- **Output Dimensionality:** 1024 tokens
|
361 |
+
- **Similarity Function:** Cosine Similarity
|
362 |
+
- **Training Dataset:**
|
363 |
+
- json
|
364 |
+
<!-- - **Language:** Unknown -->
|
365 |
+
<!-- - **License:** Unknown -->
|
366 |
+
|
367 |
+
### Model Sources
|
368 |
+
|
369 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
370 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
371 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
372 |
+
|
373 |
+
### Full Model Architecture
|
374 |
+
|
375 |
+
```
|
376 |
+
SentenceTransformer(
|
377 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
|
378 |
+
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
379 |
+
(2): Normalize()
|
380 |
+
)
|
381 |
+
```
|
382 |
+
|
383 |
+
## Usage
|
384 |
+
|
385 |
+
### Direct Usage (Sentence Transformers)
|
386 |
+
|
387 |
+
First install the Sentence Transformers library:
|
388 |
+
|
389 |
+
```bash
|
390 |
+
pip install -U sentence-transformers
|
391 |
+
```
|
392 |
+
|
393 |
+
Then you can load this model and run inference.
|
394 |
+
```python
|
395 |
+
from sentence_transformers import SentenceTransformer
|
396 |
+
|
397 |
+
# Download from the 🤗 Hub
|
398 |
+
model = SentenceTransformer("tessimago/bge-large-repmus-cross_entropy")
|
399 |
+
# Run inference
|
400 |
+
sentences = [
|
401 |
+
'Sound funding decisions arise out of accurate assessments made of the SAR system. To measure the performance or effectiveness of a SAR system usually requires collecting information or statistics and establishing agreed-upon goals. All pertinent information should be collected, including where the system failed to perform as it should have; failures and successes provide valuable information in assessing effectiveness and determining means to improve. ',
|
402 |
+
'What is required to measure the performance or effectiveness of a SAR system?',
|
403 |
+
'What is the effect of decreasing track spacing on the area that can be searched?',
|
404 |
+
]
|
405 |
+
embeddings = model.encode(sentences)
|
406 |
+
print(embeddings.shape)
|
407 |
+
# [3, 1024]
|
408 |
+
|
409 |
+
# Get the similarity scores for the embeddings
|
410 |
+
similarities = model.similarity(embeddings, embeddings)
|
411 |
+
print(similarities.shape)
|
412 |
+
# [3, 3]
|
413 |
+
```
|
414 |
+
|
415 |
+
<!--
|
416 |
+
### Direct Usage (Transformers)
|
417 |
+
|
418 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
419 |
+
|
420 |
+
</details>
|
421 |
+
-->
|
422 |
+
|
423 |
+
<!--
|
424 |
+
### Downstream Usage (Sentence Transformers)
|
425 |
+
|
426 |
+
You can finetune this model on your own dataset.
|
427 |
+
|
428 |
+
<details><summary>Click to expand</summary>
|
429 |
+
|
430 |
+
</details>
|
431 |
+
-->
|
432 |
+
|
433 |
+
<!--
|
434 |
+
### Out-of-Scope Use
|
435 |
+
|
436 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
437 |
+
-->
|
438 |
+
|
439 |
+
## Evaluation
|
440 |
+
|
441 |
+
### Metrics
|
442 |
+
|
443 |
+
#### Information Retrieval
|
444 |
+
* Dataset: `dim_768`
|
445 |
+
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
446 |
+
|
447 |
+
| Metric | Value |
|
448 |
+
|:--------------------|:-----------|
|
449 |
+
| cosine_accuracy@1 | 0.7719 |
|
450 |
+
| cosine_accuracy@3 | 0.9298 |
|
451 |
+
| cosine_accuracy@5 | 0.9561 |
|
452 |
+
| cosine_accuracy@10 | 1.0 |
|
453 |
+
| cosine_precision@1 | 0.7719 |
|
454 |
+
| cosine_precision@3 | 0.3099 |
|
455 |
+
| cosine_precision@5 | 0.1912 |
|
456 |
+
| cosine_precision@10 | 0.1 |
|
457 |
+
| cosine_recall@1 | 0.7719 |
|
458 |
+
| cosine_recall@3 | 0.9298 |
|
459 |
+
| cosine_recall@5 | 0.9561 |
|
460 |
+
| cosine_recall@10 | 1.0 |
|
461 |
+
| cosine_ndcg@10 | 0.8885 |
|
462 |
+
| cosine_mrr@10 | 0.8524 |
|
463 |
+
| **cosine_map@100** | **0.8524** |
|
464 |
+
|
465 |
+
#### Information Retrieval
|
466 |
+
* Dataset: `dim_512`
|
467 |
+
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
468 |
+
|
469 |
+
| Metric | Value |
|
470 |
+
|:--------------------|:-----------|
|
471 |
+
| cosine_accuracy@1 | 0.7544 |
|
472 |
+
| cosine_accuracy@3 | 0.9123 |
|
473 |
+
| cosine_accuracy@5 | 0.9561 |
|
474 |
+
| cosine_accuracy@10 | 0.9912 |
|
475 |
+
| cosine_precision@1 | 0.7544 |
|
476 |
+
| cosine_precision@3 | 0.3041 |
|
477 |
+
| cosine_precision@5 | 0.1912 |
|
478 |
+
| cosine_precision@10 | 0.0991 |
|
479 |
+
| cosine_recall@1 | 0.7544 |
|
480 |
+
| cosine_recall@3 | 0.9123 |
|
481 |
+
| cosine_recall@5 | 0.9561 |
|
482 |
+
| cosine_recall@10 | 0.9912 |
|
483 |
+
| cosine_ndcg@10 | 0.8791 |
|
484 |
+
| cosine_mrr@10 | 0.8425 |
|
485 |
+
| **cosine_map@100** | **0.8432** |
|
486 |
+
|
487 |
+
#### Information Retrieval
|
488 |
+
* Dataset: `dim_256`
|
489 |
+
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
490 |
+
|
491 |
+
| Metric | Value |
|
492 |
+
|:--------------------|:-----------|
|
493 |
+
| cosine_accuracy@1 | 0.7456 |
|
494 |
+
| cosine_accuracy@3 | 0.8947 |
|
495 |
+
| cosine_accuracy@5 | 0.9386 |
|
496 |
+
| cosine_accuracy@10 | 0.9649 |
|
497 |
+
| cosine_precision@1 | 0.7456 |
|
498 |
+
| cosine_precision@3 | 0.2982 |
|
499 |
+
| cosine_precision@5 | 0.1877 |
|
500 |
+
| cosine_precision@10 | 0.0965 |
|
501 |
+
| cosine_recall@1 | 0.7456 |
|
502 |
+
| cosine_recall@3 | 0.8947 |
|
503 |
+
| cosine_recall@5 | 0.9386 |
|
504 |
+
| cosine_recall@10 | 0.9649 |
|
505 |
+
| cosine_ndcg@10 | 0.8623 |
|
506 |
+
| cosine_mrr@10 | 0.8288 |
|
507 |
+
| **cosine_map@100** | **0.8311** |
|
508 |
+
|
509 |
+
#### Information Retrieval
|
510 |
+
* Dataset: `dim_128`
|
511 |
+
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
512 |
+
|
513 |
+
| Metric | Value |
|
514 |
+
|:--------------------|:-----------|
|
515 |
+
| cosine_accuracy@1 | 0.7018 |
|
516 |
+
| cosine_accuracy@3 | 0.8246 |
|
517 |
+
| cosine_accuracy@5 | 0.8772 |
|
518 |
+
| cosine_accuracy@10 | 0.9386 |
|
519 |
+
| cosine_precision@1 | 0.7018 |
|
520 |
+
| cosine_precision@3 | 0.2749 |
|
521 |
+
| cosine_precision@5 | 0.1754 |
|
522 |
+
| cosine_precision@10 | 0.0939 |
|
523 |
+
| cosine_recall@1 | 0.7018 |
|
524 |
+
| cosine_recall@3 | 0.8246 |
|
525 |
+
| cosine_recall@5 | 0.8772 |
|
526 |
+
| cosine_recall@10 | 0.9386 |
|
527 |
+
| cosine_ndcg@10 | 0.8147 |
|
528 |
+
| cosine_mrr@10 | 0.7757 |
|
529 |
+
| **cosine_map@100** | **0.7789** |
|
530 |
+
|
531 |
+
#### Information Retrieval
|
532 |
+
* Dataset: `dim_64`
|
533 |
+
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
534 |
+
|
535 |
+
| Metric | Value |
|
536 |
+
|:--------------------|:-----------|
|
537 |
+
| cosine_accuracy@1 | 0.6228 |
|
538 |
+
| cosine_accuracy@3 | 0.7544 |
|
539 |
+
| cosine_accuracy@5 | 0.7895 |
|
540 |
+
| cosine_accuracy@10 | 0.8596 |
|
541 |
+
| cosine_precision@1 | 0.6228 |
|
542 |
+
| cosine_precision@3 | 0.2515 |
|
543 |
+
| cosine_precision@5 | 0.1579 |
|
544 |
+
| cosine_precision@10 | 0.086 |
|
545 |
+
| cosine_recall@1 | 0.6228 |
|
546 |
+
| cosine_recall@3 | 0.7544 |
|
547 |
+
| cosine_recall@5 | 0.7895 |
|
548 |
+
| cosine_recall@10 | 0.8596 |
|
549 |
+
| cosine_ndcg@10 | 0.7407 |
|
550 |
+
| cosine_mrr@10 | 0.7031 |
|
551 |
+
| **cosine_map@100** | **0.7109** |
|
552 |
+
|
553 |
+
<!--
|
554 |
+
## Bias, Risks and Limitations
|
555 |
+
|
556 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
557 |
+
-->
|
558 |
+
|
559 |
+
<!--
|
560 |
+
### Recommendations
|
561 |
+
|
562 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
563 |
+
-->
|
564 |
+
|
565 |
+
## Training Details
|
566 |
+
|
567 |
+
### Training Dataset
|
568 |
+
|
569 |
+
#### json
|
570 |
+
|
571 |
+
* Dataset: json
|
572 |
+
* Size: 1,024 training samples
|
573 |
+
* Columns: <code>positive</code> and <code>anchor</code>
|
574 |
+
* Approximate statistics based on the first 1000 samples:
|
575 |
+
| | positive | anchor |
|
576 |
+
|:--------|:-------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
|
577 |
+
| type | string | string |
|
578 |
+
| details | <ul><li>min: 10 tokens</li><li>mean: 133.58 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 17.7 tokens</li><li>max: 39 tokens</li></ul> |
|
579 |
+
* Samples:
|
580 |
+
| positive | anchor |
|
581 |
+
|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------|
|
582 |
+
| <code>The debriefing helps to ensure that all survivors are rescued, to attend to the physical welfare of each survivor, and to obtain information which may assist and improve SAR services. Proper debriefing techniques include:– due care to avoid worsening a survivor’s condition by excessive debriefing;– careful assessment of the survivor’s statements if the survivor is frightened or excited;– use of a calm voice in questioning;– avoidance of suggesting the answers when obtaining facts; and– explaining that the information requested is important for the success of the SAR operation, and possibly for future SAR operations.</code> | <code>What are some proper debriefing techniques used in SAR services?</code> |
|
583 |
+
| <code>Communicating with passengers is more difficult in remote areas where phone service may be inadequate or lacking. If phones do exist, calling the airline or shipping company may be the best way to check in and find out information. In more populated areas, local agencies may have an emergency evacuation plan or other useful plan that can be implemented.IE961E.indb 21 6/28/2013 10:29:55 AM</code> | <code>What is a good way to check in and find out information in remote areas where phone service may be inadequate or lacking?</code> |
|
584 |
+
| <code>Voice communication is the basis of telemedical advice. It allows free dialogue and contributes to the human relationship, which is crucial to any medical consultation. Text messages are a useful complement to the voice telemedical advice and add the reliability of writing. Facsimile allows the exchange of pictures or diagrams, which help to identify a symptom, describe a lesion or the method of treatment. Digital data transmissions (photographs or electrocardiogram) provide an objective and potentially crucial addition to descriptive and subjective clinical data.</code> | <code>What are the types of communication methods used in telemedical advice?</code> |
|
585 |
+
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
586 |
+
```json
|
587 |
+
{
|
588 |
+
"scale": 20.0,
|
589 |
+
"similarity_fct": "cos_sim"
|
590 |
+
}
|
591 |
+
```
|
592 |
+
|
593 |
+
### Training Hyperparameters
|
594 |
+
#### Non-Default Hyperparameters
|
595 |
+
|
596 |
+
- `eval_strategy`: epoch
|
597 |
+
- `per_device_train_batch_size`: 32
|
598 |
+
- `per_device_eval_batch_size`: 16
|
599 |
+
- `gradient_accumulation_steps`: 16
|
600 |
+
- `learning_rate`: 2e-05
|
601 |
+
- `num_train_epochs`: 4
|
602 |
+
- `lr_scheduler_type`: cosine
|
603 |
+
- `warmup_ratio`: 0.1
|
604 |
+
- `bf16`: True
|
605 |
+
- `tf32`: True
|
606 |
+
- `load_best_model_at_end`: True
|
607 |
+
- `optim`: adamw_torch_fused
|
608 |
+
|
609 |
+
#### All Hyperparameters
|
610 |
+
<details><summary>Click to expand</summary>
|
611 |
+
|
612 |
+
- `overwrite_output_dir`: False
|
613 |
+
- `do_predict`: False
|
614 |
+
- `eval_strategy`: epoch
|
615 |
+
- `prediction_loss_only`: True
|
616 |
+
- `per_device_train_batch_size`: 32
|
617 |
+
- `per_device_eval_batch_size`: 16
|
618 |
+
- `per_gpu_train_batch_size`: None
|
619 |
+
- `per_gpu_eval_batch_size`: None
|
620 |
+
- `gradient_accumulation_steps`: 16
|
621 |
+
- `eval_accumulation_steps`: None
|
622 |
+
- `learning_rate`: 2e-05
|
623 |
+
- `weight_decay`: 0.0
|
624 |
+
- `adam_beta1`: 0.9
|
625 |
+
- `adam_beta2`: 0.999
|
626 |
+
- `adam_epsilon`: 1e-08
|
627 |
+
- `max_grad_norm`: 1.0
|
628 |
+
- `num_train_epochs`: 4
|
629 |
+
- `max_steps`: -1
|
630 |
+
- `lr_scheduler_type`: cosine
|
631 |
+
- `lr_scheduler_kwargs`: {}
|
632 |
+
- `warmup_ratio`: 0.1
|
633 |
+
- `warmup_steps`: 0
|
634 |
+
- `log_level`: passive
|
635 |
+
- `log_level_replica`: warning
|
636 |
+
- `log_on_each_node`: True
|
637 |
+
- `logging_nan_inf_filter`: True
|
638 |
+
- `save_safetensors`: True
|
639 |
+
- `save_on_each_node`: False
|
640 |
+
- `save_only_model`: False
|
641 |
+
- `restore_callback_states_from_checkpoint`: False
|
642 |
+
- `no_cuda`: False
|
643 |
+
- `use_cpu`: False
|
644 |
+
- `use_mps_device`: False
|
645 |
+
- `seed`: 42
|
646 |
+
- `data_seed`: None
|
647 |
+
- `jit_mode_eval`: False
|
648 |
+
- `use_ipex`: False
|
649 |
+
- `bf16`: True
|
650 |
+
- `fp16`: False
|
651 |
+
- `fp16_opt_level`: O1
|
652 |
+
- `half_precision_backend`: auto
|
653 |
+
- `bf16_full_eval`: False
|
654 |
+
- `fp16_full_eval`: False
|
655 |
+
- `tf32`: True
|
656 |
+
- `local_rank`: 0
|
657 |
+
- `ddp_backend`: None
|
658 |
+
- `tpu_num_cores`: None
|
659 |
+
- `tpu_metrics_debug`: False
|
660 |
+
- `debug`: []
|
661 |
+
- `dataloader_drop_last`: False
|
662 |
+
- `dataloader_num_workers`: 0
|
663 |
+
- `dataloader_prefetch_factor`: None
|
664 |
+
- `past_index`: -1
|
665 |
+
- `disable_tqdm`: False
|
666 |
+
- `remove_unused_columns`: True
|
667 |
+
- `label_names`: None
|
668 |
+
- `load_best_model_at_end`: True
|
669 |
+
- `ignore_data_skip`: False
|
670 |
+
- `fsdp`: []
|
671 |
+
- `fsdp_min_num_params`: 0
|
672 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
673 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
674 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
675 |
+
- `deepspeed`: None
|
676 |
+
- `label_smoothing_factor`: 0.0
|
677 |
+
- `optim`: adamw_torch_fused
|
678 |
+
- `optim_args`: None
|
679 |
+
- `adafactor`: False
|
680 |
+
- `group_by_length`: False
|
681 |
+
- `length_column_name`: length
|
682 |
+
- `ddp_find_unused_parameters`: None
|
683 |
+
- `ddp_bucket_cap_mb`: None
|
684 |
+
- `ddp_broadcast_buffers`: False
|
685 |
+
- `dataloader_pin_memory`: True
|
686 |
+
- `dataloader_persistent_workers`: False
|
687 |
+
- `skip_memory_metrics`: True
|
688 |
+
- `use_legacy_prediction_loop`: False
|
689 |
+
- `push_to_hub`: False
|
690 |
+
- `resume_from_checkpoint`: None
|
691 |
+
- `hub_model_id`: None
|
692 |
+
- `hub_strategy`: every_save
|
693 |
+
- `hub_private_repo`: False
|
694 |
+
- `hub_always_push`: False
|
695 |
+
- `gradient_checkpointing`: False
|
696 |
+
- `gradient_checkpointing_kwargs`: None
|
697 |
+
- `include_inputs_for_metrics`: False
|
698 |
+
- `eval_do_concat_batches`: True
|
699 |
+
- `fp16_backend`: auto
|
700 |
+
- `push_to_hub_model_id`: None
|
701 |
+
- `push_to_hub_organization`: None
|
702 |
+
- `mp_parameters`:
|
703 |
+
- `auto_find_batch_size`: False
|
704 |
+
- `full_determinism`: False
|
705 |
+
- `torchdynamo`: None
|
706 |
+
- `ray_scope`: last
|
707 |
+
- `ddp_timeout`: 1800
|
708 |
+
- `torch_compile`: False
|
709 |
+
- `torch_compile_backend`: None
|
710 |
+
- `torch_compile_mode`: None
|
711 |
+
- `dispatch_batches`: None
|
712 |
+
- `split_batches`: None
|
713 |
+
- `include_tokens_per_second`: False
|
714 |
+
- `include_num_input_tokens_seen`: False
|
715 |
+
- `neftune_noise_alpha`: None
|
716 |
+
- `optim_target_modules`: None
|
717 |
+
- `batch_eval_metrics`: False
|
718 |
+
- `batch_sampler`: batch_sampler
|
719 |
+
- `multi_dataset_batch_sampler`: proportional
|
720 |
+
|
721 |
+
</details>
|
722 |
+
|
723 |
+
### Training Logs
|
724 |
+
| Epoch | Step | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
|
725 |
+
|:-------:|:-----:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
|
726 |
+
| 1.0 | 2 | 0.7770 | 0.8173 | 0.8316 | 0.6838 | 0.8448 |
|
727 |
+
| **2.0** | **4** | **0.7858** | **0.8221** | **0.8326** | **0.6993** | **0.8478** |
|
728 |
+
| 3.0 | 6 | 0.7801 | 0.8297 | 0.8412 | 0.7101 | 0.8517 |
|
729 |
+
| 4.0 | 8 | 0.7789 | 0.8311 | 0.8432 | 0.7109 | 0.8524 |
|
730 |
+
|
731 |
+
* The bold row denotes the saved checkpoint.
|
732 |
+
|
733 |
+
### Framework Versions
|
734 |
+
- Python: 3.10.14
|
735 |
+
- Sentence Transformers: 3.1.0
|
736 |
+
- Transformers: 4.41.2
|
737 |
+
- PyTorch: 2.1.2+cu121
|
738 |
+
- Accelerate: 0.34.2
|
739 |
+
- Datasets: 2.19.1
|
740 |
+
- Tokenizers: 0.19.1
|
741 |
+
|
742 |
+
## Citation
|
743 |
+
|
744 |
+
### BibTeX
|
745 |
+
|
746 |
+
#### Sentence Transformers
|
747 |
+
```bibtex
|
748 |
+
@inproceedings{reimers-2019-sentence-bert,
|
749 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
750 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
751 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
752 |
+
month = "11",
|
753 |
+
year = "2019",
|
754 |
+
publisher = "Association for Computational Linguistics",
|
755 |
+
url = "https://arxiv.org/abs/1908.10084",
|
756 |
+
}
|
757 |
+
```
|
758 |
+
|
759 |
+
#### MultipleNegativesRankingLoss
|
760 |
+
```bibtex
|
761 |
+
@misc{henderson2017efficient,
|
762 |
+
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
763 |
+
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
764 |
+
year={2017},
|
765 |
+
eprint={1705.00652},
|
766 |
+
archivePrefix={arXiv},
|
767 |
+
primaryClass={cs.CL}
|
768 |
+
}
|
769 |
+
```
|
770 |
+
|
771 |
+
<!--
|
772 |
+
## Glossary
|
773 |
+
|
774 |
+
*Clearly define terms in order to be accessible across audiences.*
|
775 |
+
-->
|
776 |
+
|
777 |
+
<!--
|
778 |
+
## Model Card Authors
|
779 |
+
|
780 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
781 |
+
-->
|
782 |
+
|
783 |
+
<!--
|
784 |
+
## Model Card Contact
|
785 |
+
|
786 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
787 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "BAAI/bge-large-en-v1.5",
|
3 |
+
"architectures": [
|
4 |
+
"BertModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"gradient_checkpointing": false,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 1024,
|
12 |
+
"id2label": {
|
13 |
+
"0": "LABEL_0"
|
14 |
+
},
|
15 |
+
"initializer_range": 0.02,
|
16 |
+
"intermediate_size": 4096,
|
17 |
+
"label2id": {
|
18 |
+
"LABEL_0": 0
|
19 |
+
},
|
20 |
+
"layer_norm_eps": 1e-12,
|
21 |
+
"max_position_embeddings": 512,
|
22 |
+
"model_type": "bert",
|
23 |
+
"num_attention_heads": 16,
|
24 |
+
"num_hidden_layers": 24,
|
25 |
+
"pad_token_id": 0,
|
26 |
+
"position_embedding_type": "absolute",
|
27 |
+
"torch_dtype": "float32",
|
28 |
+
"transformers_version": "4.41.2",
|
29 |
+
"type_vocab_size": 2,
|
30 |
+
"use_cache": true,
|
31 |
+
"vocab_size": 30522
|
32 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.1.0",
|
4 |
+
"transformers": "4.41.2",
|
5 |
+
"pytorch": "2.1.2+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": null
|
10 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a2e031c5bdabb4864eeb7e99d55dd3bc37b6359905d73b5d7b2ca763d1c5d1f4
|
3 |
+
size 1340612432
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": true
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
+
"do_lower_case": true,
|
48 |
+
"mask_token": "[MASK]",
|
49 |
+
"model_max_length": 512,
|
50 |
+
"never_split": null,
|
51 |
+
"pad_token": "[PAD]",
|
52 |
+
"sep_token": "[SEP]",
|
53 |
+
"strip_accents": null,
|
54 |
+
"tokenize_chinese_chars": true,
|
55 |
+
"tokenizer_class": "BertTokenizer",
|
56 |
+
"unk_token": "[UNK]"
|
57 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|