terhdavid commited on
Commit
61e92bc
1 Parent(s): af1bc04

End of training

Browse files
Files changed (1) hide show
  1. README.md +11 -11
README.md CHANGED
@@ -25,16 +25,16 @@ model-index:
25
  metrics:
26
  - name: Precision
27
  type: precision
28
- value: 0.8242280285035629
29
  - name: Recall
30
  type: recall
31
- value: 0.8497959183673469
32
  - name: F1
33
  type: f1
34
- value: 0.8368167202572347
35
  - name: Accuracy
36
  type: accuracy
37
- value: 0.9820508183380052
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -44,11 +44,11 @@ should probably proofread and complete it, then remove this comment. -->
44
 
45
  This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the szeged_ner dataset.
46
  It achieves the following results on the evaluation set:
47
- - Loss: 0.0620
48
- - Precision: 0.8242
49
- - Recall: 0.8498
50
- - F1: 0.8368
51
- - Accuracy: 0.9821
52
 
53
  ## Model description
54
 
@@ -79,8 +79,8 @@ The following hyperparameters were used during training:
79
 
80
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
- | 0.2234 | 1.0 | 511 | 0.0747 | 0.8070 | 0.8261 | 0.8165 | 0.9795 |
83
- | 0.087 | 2.0 | 1022 | 0.0620 | 0.8242 | 0.8498 | 0.8368 | 0.9821 |
84
 
85
 
86
  ### Framework versions
 
25
  metrics:
26
  - name: Precision
27
  type: precision
28
+ value: 0.8253343823760818
29
  - name: Recall
30
  type: recall
31
+ value: 0.856326530612245
32
  - name: F1
33
  type: f1
34
+ value: 0.8405448717948719
35
  - name: Accuracy
36
  type: accuracy
37
+ value: 0.9829550592277783
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
44
 
45
  This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the szeged_ner dataset.
46
  It achieves the following results on the evaluation set:
47
+ - Loss: 0.0590
48
+ - Precision: 0.8253
49
+ - Recall: 0.8563
50
+ - F1: 0.8405
51
+ - Accuracy: 0.9830
52
 
53
  ## Model description
54
 
 
79
 
80
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
+ | 0.2068 | 1.0 | 511 | 0.0724 | 0.8008 | 0.8237 | 0.8121 | 0.9797 |
83
+ | 0.0835 | 2.0 | 1022 | 0.0590 | 0.8253 | 0.8563 | 0.8405 | 0.9830 |
84
 
85
 
86
  ### Framework versions