temporary0-0name commited on
Commit
b5ea213
1 Parent(s): de55b2b

Upload PPO LunarLander-v2 trained agent

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 231.35 +/- 70.61
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 134.49 +/- 108.36
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fcd4d308c10>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fcd4d308ca0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fcd4d308d30>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fcd4d308dc0>", "_build": "<function ActorCriticPolicy._build at 0x7fcd4d308e50>", "forward": "<function ActorCriticPolicy.forward at 0x7fcd4d308ee0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fcd4d308f70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fcd4d309000>", "_predict": "<function ActorCriticPolicy._predict at 0x7fcd4d309090>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fcd4d309120>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fcd4d3091b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fcd4d309240>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fcd4d2fb300>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1684852629410666313, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAM3QlTto+60/zprnPSrt2L7JPqU7sChvPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVNgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGHQ9tEXtSiMAWyUTegDjAF0lEdAohUZc/t6X3V9lChoBkdAbPjnjhky12gHTRcBaAhHQKIV82tMfzV1fZQoaAZHQFmmpA2Q4jtoB03oA2gIR0CiGmCUHIIXdX2UKGgGR0BwkelfqoqDaAdNMgFoCEdAohyo11nuiXV9lChoBkdAcFjLteD3/WgHTSoBaAhHQKIdj3yqdYp1fZQoaAZHQHEZFzltCRhoB01BAWgIR0CiHn49X9zfdX2UKGgGR0Buk5EYwZflaAdNJwFoCEdAoh+dSGahH3V9lChoBkdAcHXsQNCqqGgHTR4BaAhHQKIioXj2i+N1fZQoaAZHQG2I/WMCLdhoB00bAWgIR0CiI9XV09yMdX2UKGgGR0Bx15x82JizaAdNFwFoCEdAoiUJMzuWr3V9lChoBkfAQryRZEDyOWgHS/NoCEdAoiefCAMDwHV9lChoBkdAb/9vaURnOGgHTSsBaAhHQKIohSR8twt1fZQoaAZHQHCL/ddmg8NoB00nAWgIR0CiKW7MxGlRdX2UKGgGR0BtgKGBWgezaAdNDAFoCEdAoipBd6cAinV9lChoBkdAZF8aXrt3OmgHTegDaAhHQKIurwuuiex1fZQoaAZHQG0ugLiMo+hoB00VAWgIR0CiMOzdtVJddX2UKGgGR0Bw4Xj6vaDgaAdNLQFoCEdAojHTWkJrtXV9lChoBkdAcLfcFQl8gWgHTRMBaAhHQKIyqBg/keZ1fZQoaAZHQHC9GkzoEB9oB00ZAWgIR0CiM3mz8gp0dX2UKGgGR0Bkm/k5p8F7aAdN6ANoCEdAojfSynk1dnV9lChoBkdAbsKgieNDMWgHTQkBaAhHQKI59rZ8KHB1fZQoaAZHQHBb9bLU1AJoB00tAWgIR0CiOuXzcynDdX2UKGgGR0Bi+ME/0NBoaAdN6ANoCEdAokEZ+MIeHXV9lChoBkdAcZvIuGsV+WgHTRMBaAhHQKJCUlpGnXN1fZQoaAZHQG39qCYkVvdoB00mAWgIR0CiRLokqto0dX2UKGgGR0Bx2lz90ihWaAdL/WgIR0CiRXrqUu+RdX2UKGgGR0BvPNrbg0j1aAdNEwFoCEdAokZMGcFyJnV9lChoBkdAYu8zzErGzmgHTegDaAhHQKJKo0hNdqt1fZQoaAZHQG/8yksSTQpoB00CAWgIR0CiS16I3zczdX2UKGgGR0Bx4Ga5PM0QaAdNRgFoCEdAok2oEdNnG3V9lChoBkdAbgr1J17pmmgHTQcBaAhHQKJObA9FF2F1fZQoaAZHQGPo4nOSntRoB03oA2gIR0CiUtBxgiNbdX2UKGgGR0BwYvFqBVdYaAdNGwFoCEdAolOm1c+qznV9lChoBkdAcuBR0lqrR2gHTRUBaAhHQKJUe3c580F1fZQoaAZHQGNaX/HYHxBoB03oA2gIR0CiWaN1hb4bdX2UKGgGR0BfgnwXqJMyaAdN6ANoCEdAol/M25xzaXV9lChoBkdAcHWFS88La2gHTR8BaAhHQKJh+aR6nix1fZQoaAZHQHIS3NPgvUVoB00WAWgIR0CiYseXAuZkdX2UKGgGR0BxpobOu7pWaAdNPAFoCEdAomO4YYR/VnV9lChoBkdAcZ+YU34sVmgHTSQBaAhHQKJkkDHwPRR1fZQoaAZHQHGNJrtVrARoB0vtaAhHQKJmnv2oNut1fZQoaAZHQGwkIGpuMuRoB00hAWgIR0CiZ3kNOM2ndX2UKGgGR0BxrYoAn2IwaAdNIwFoCEdAomhVygf2b3V9lChoBkdAcLOPQOWjXWgHTRQBaAhHQKJqhGRV6u51fZQoaAZHQG+aneizsyBoB0v2aAhHQKJrRUUfxMF1fZQoaAZHQG/K2bobGWFoB00iAWgIR0CibB3CCSRsdX2UKGgGR0BwR0FQl8gIaAdNLwFoCEdAomz+2y9mH3V9lChoBkdAcOm2vStvGmgHTT4BaAhHQKJvQOUdJat1fZQoaAZHQGdrBy8zyjJoB03oA2gIR0Cic7LHU+cIdX2UKGgGR0Bxn2NwR5C4aAdN7wFoCEdAonWiXhOxjnV9lChoBkdAcxKOx0MgEGgHS/RoCEdAonalLeyiVXV9lChoBkdAYVDVmz0HyGgHTegDaAhHQKJ8kaAFxGV1fZQoaAZHQHE98urZJ05oB00xAWgIR0CiftS39aUzdX2UKGgGR0BxGQd3jdYXaAdNCQFoCEdAon+YwTM7l3V9lChoBkdAZBgxVQyhz2gHTegDaAhHQKKD/KOktVd1fZQoaAZHQGxIOO801qFoB00NAWgIR0CihMbkGRmsdX2UKGgGR0Bwe9PfsNUgaAdNIAFoCEdAooWff0mMO3V9lChoBkdAcGrhAWznimgHTQgBaAhHQKKHtV09yLh1fZQoaAZHQHC9x8YyfthoB00FAWgIR0CiiHbAUL2IdX2UKGgGR0Buu+lImPYGaAdNGgFoCEdAoolCVrylN3V9lChoBkfABvLLZBcAzmgHS7RoCEdAoonGloDgZXV9lChoBkdAcO08fms/6mgHTRYBaAhHQKKL3kDp1Rt1fZQoaAZHQHCXRF/hESdoB00JAWgIR0CijKOrZJ05dX2UKGgGR0Bv80URFqi5aAdNCgFoCEdAoo1jOeJ53XV9lChoBkdAbmiNz8xbjmgHTRMBaAhHQKKON1anrIJ1fZQoaAZHQHBahbnoxHpoB00vAWgIR0CikOKfvnbJdX2UKGgGR0BtbnLcKw6iaAdNEQFoCEdAopHu38XN1XV9lChoBkdAcRtMw1zhgmgHS/5oCEdAopMGhwl0HXV9lChoBkdAbbwi8nNPg2gHTRQBaAhHQKKWLrOZ9eB1fZQoaAZHQHBOu+Eh7mdoB00RAWgIR0Cil1yHdoFndX2UKGgGR0BvvPG4qgAZaAdNFQFoCEdAopguchC+lHV9lChoBkdAcK3RgZ0jkmgHS/VoCEdAopjkSsbNr3V9lChoBkdAbvJ42S+xnmgHS/NoCEdAopr6CrcTJ3V9lChoBkdAcUjbLU1AJWgHTQIBaAhHQKKbuQg9vCN1fZQoaAZHQG/zraM72ctoB0v6aAhHQKKcdIy0rsl1fZQoaAZHQHDBhOxjawloB00WAWgIR0CinUKbSZ0CdX2UKGgGR0BwSA9GI9DAaAdNDQFoCEdAop9bwazeGnV9lChoBkdAbg74/NZ/1GgHTRoBaAhHQKKgMejEehh1fZQoaAZHQHEdWt6ol2NoB0vlaAhHQKKg4Ei+tbN1fZQoaAZHQG8TM052hZhoB0vxaAhHQKKhkiW3Sa51fZQoaAZHQG8tT4cm0E5oB01XAWgIR0Cio+/xtpEhdX2UKGgGR0Bw0jWy1NQCaAdNBAFoCEdAoqS5cmjTKHV9lChoBkdAcNlcC5mRNmgHS/NoCEdAoqVwjbBXS3V9lChoBkdAcKcj5bhWHWgHTRwBaAhHQKKmP/3nIQx1fZQoaAZHQGSKDVH4GlhoB03oA2gIR0Ciqo7ojfNzdX2UKGgGR0BwYV1IRRMwaAdNBwFoCEdAoq0nkFOfunV9lChoBkdAbeVYJ3PiUGgHTRUBaAhHQKKuT9fkWAR1fZQoaAZHQHCSHzlLeyloB00BAWgIR0Cir26Ss8xLdX2UKGgGR0ByAj1Iy0rtaAdL52gIR0CisG7LU1AJdX2UKGgGR0Bu1NqN6w+uaAdNDgFoCEdAorN5kVeruXV9lChoBkdAcg8OlO45LmgHTSUBaAhHQKK0V5rP+n91fZQoaAZHQGG4CobXHzZoB03oA2gIR0CiuLQDmr80dX2UKGgGR0BwKF5KODJ2aAdNGgFoCEdAormNN5+pfnV9lChoBkdAcHf0/4ZdfWgHTQUBaAhHQKK6TyR0U491fZQoaAZHQHDc03juKGdoB00QAWgIR0CivIS1eBxxdX2UKGgGR0BvRMLc9GI9aAdNJgFoCEdAor1h2U0N0HV9lChoBkdAbLHhDPWxyGgHTS0BaAhHQKK+O6ErXlN1fZQoaAZHQHCFko8ZDRdoB00WAWgIR0CiwGZGjKxLdX2UKGgGR0BgbRVhkRSQaAdN6ANoCEdAosS0/QjUu3V9lChoBkdAYDUZmZmZmmgHTegDaAhHQKLHzMdtEXt1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 9770, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f36cff1beb0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f36cff1bf40>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f36cff24040>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f36cff240d0>", "_build": "<function ActorCriticPolicy._build at 0x7f36cff24160>", "forward": "<function ActorCriticPolicy.forward at 0x7f36cff241f0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f36cff24280>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f36cff24310>", "_predict": "<function ActorCriticPolicy._predict at 0x7f36cff243a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f36cff24430>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f36cff244c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f36cff24550>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f36cff17d00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 4000768, "_total_timesteps": 4000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1684914393488415561, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAFoKsb37LKs/ulvEvjq52L4jqDW+hil8vgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00019199999999996997, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV7wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGHyvqC6H0uMAWyUTegDjAF0lEdAwL9WKkVN6HV9lChoBkdAci7IRywOfGgHS7NoCEdAwL+Eg/1QInV9lChoBkdAcR7MmWt2cWgHS8RoCEdAwL+160IC2nV9lChoBkdAclbP91loUWgHS79oCEdAwL/lOSntOXV9lChoBkfAffQoPTXrdGgHS3NoCEdAwMADHfdhzHV9lChoBkdAQ15zV+Zw42gHS31oCEdAwMCD0xubZ3V9lChoBkdAcudmplz2e2gHS71oCEdAwMCj4Irvs3V9lChoBkdAcY9obGWD6GgHS9doCEdAwMDIicG1QnV9lChoBkdAcnxLzwtrbmgHS6doCEdAwMDkc+aBqnV9lChoBkdAcStVeruIAWgHS91oCEdAwMEJylvZRXV9lChoBkdAc8Etg8bJfmgHS7loCEdAwMEpMj/uLXV9lChoBkdAccI8E3bVSWgHS7JoCEdAwMGYNIbwSnV9lChoBkdAcIDGY8dPtWgHS71oCEdAwMG3AfuCw3V9lChoBkdAcAFyd4FA3WgHS8hoCEdAwMHX0QK8c3V9lChoBkdAYxWCbtqpLmgHTegDaAhHQMDC0yhi9Zl1fZQoaAZHQG74uSwGGEhoB0u+aAhHQMDC8rDIikh1fZQoaAZHQHHDf9DQZ4xoB0u8aAhHQMDDEmbCrLh1fZQoaAZHQHHG4BzV+ZxoB0vQaAhHQMDDhPPszEd1fZQoaAZHQHPL03GXHBFoB0vaaAhHQMDDqlwtJ4B1fZQoaAZHQHHMeLehwl1oB0voaAhHQMDD0aVUuL91fZQoaAZHQEWgw5/9YOloB0tkaAhHQMDD4mbkOqh1fZQoaAZHQHEEL39JjDtoB0u7aAhHQMDEAlyzXz11fZQoaAZHwEcLw9aEBbRoB0t4aAhHQMDEF0G/vfF1fZQoaAZHQHO2ubExZdRoB0u/aAhHQMDEi1HOKO11fZQoaAZHQHDx1uivgWJoB0vNaAhHQMDEr08FINF1fZQoaAZHQHCQa+zt1IRoB0vHaAhHQMDE0VeSjg11fZQoaAZHQHL1WR3eN1hoB0vIaAhHQMDE8s3ZPEd1fZQoaAZHQG9M3trsSkFoB0vKaAhHQMDFFaN+9al1fZQoaAZHQGdnGMn7YTVoB03oA2gIR0DAxl7FfiPydX2UKGgGR8B0RRdkauOkaAdLaWgIR0DAxnkRjBl+dX2UKGgGR0BovLQ3PzFuaAdN6ANoCEdAwMemRISUT3V9lChoBkdAcZ28wHqu82gHS+FoCEdAwMgbuv2XcHV9lChoBkdAcizRP420iWgHS6poCEdAwMg4dxyXD3V9lChoBkdAcalyjHn2ZmgHS91oCEdAwMhc4qgAZXV9lChoBkdAN0wV9F4LTmgHS2ZoCEdAwMhtstTUAnV9lChoBkdAMseqWC2+f2gHS4ZoCEdAwMiEIKMNt3V9lChoBkdAcl+4W1twaWgHS85oCEdAwMinNDc/MXV9lChoBkdAcpAskIHC42gHS9VoCEdAwMkbrwe/6HV9lChoBkdAcbL+MqBmPGgHS8JoCEdAwMk8pnYg73V9lChoBkdAcKwj4Hoou2gHS9JoCEdAwMlf0T101nV9lChoBkdAcuUGzru6VmgHS9xoCEdAwMmFLgXMyXV9lChoBkdAcGxesPrfL2gHS8xoCEdAwMmpXFtKqXV9lChoBkdAc1UGpMpPRGgHTfgBaAhHQMDKV+jVQRB1fZQoaAZHQHCqpylvZRNoB0vMaAhHQMDKegt4A0d1fZQoaAZHQG+gLuQZGaxoB0uzaAhHQMDKmCaqjrR1fZQoaAZHQGSXMyzolldoB03oA2gIR0DAy5aGDcubdX2UKGgGR0AjIosqaw2VaAdLcmgIR0DAy6li4J/odX2UKGgGR0Bx0uSvC/GmaAdLuGgIR0DAzB04zabndX2UKGgGR0BxgMjC53C9aAdLt2gIR0DAzEdvuPV/dX2UKGgGR0BwfX0g8r7PaAdL5mgIR0DAzHjQE6kqdX2UKGgGR0Bw3/DR+jM3aAdL32gIR0DAzKnrWy1NdX2UKGgGR8CB9FZ9uxbCaAdLcWgIR0DAzMWsmv4edX2UKGgGR0BxR1AlfJFLaAdL2mgIR0DAzXU7QswtdX2UKGgGR0Bx4C6kIomYaAdLxmgIR0DAzafkPtladX2UKGgGR0ByTGyNXHR1aAdLr2gIR0DAzdUdzXBhdX2UKGgGR0BxsU2vStvGaAdL0mgIR0DAzf4a1kUcdX2UKGgGR0BtkK/GlyimaAdLu2gIR0DAzh1s1sLwdX2UKGgGR0BydiLNwBHTaAdLpmgIR0DAzjk3GXHBdX2UKGgGR0BxEzvttyggaAdL0GgIR0DAzq4P5HmSdX2UKGgGR0BuxALy+YdAaAdLwWgIR0DAzs8s189fdX2UKGgGR0BzJbUqhDgJaAdL4mgIR0DAzvjDhtLtdX2UKGgGR0Bu7tkc0cfeaAdLx2gIR0DAzxsSIxgzdX2UKGgGR0ByGE9r433paAdL2mgIR0DAz5eB19v1dX2UKGgGR0Bu2KqU/wAmaAdLwWgIR0DAz7goVmBfdX2UKGgGR0BEtiWE9MbnaAdLjWgIR0DAz9CxiXpodX2UKGgGR0BxVE5cTrVwaAdLwGgIR0DAz/BOzposdX2UKGgGR0Bywywr1/UfaAdL2GgIR0DA0BQdCE6DdX2UKGgGR0By15nwob4raAdLymgIR0DA0DYvpQk5dX2UKGgGR0BG0JQLux8laAdLgmgIR0DA0J8uQIUrdX2UKGgGR8AIZCMPz4DcaAdLYWgIR0DA0K/974SIdX2UKGgGR0BxiWnuRcNZaAdLuWgIR0DA0M81/DtPdX2UKGgGR8BXvqjBVMmGaAdLdWgIR0DA0OOhoM8YdX2UKGgGR0Bw7eHmA9V4aAdL0WgIR0DA0QaF0xM4dX2UKGgGR0A4J63AmAskaAdLlmgIR0DA0R/eSB9UdX2UKGgGR0Bw06OAAhjfaAdLqGgIR0DA0TxWDHwPdX2UKGgGR0Bv3JMFlkH2aAdLxWgIR0DA0bEUXYUWdX2UKGgGR0BzLMK4QSSNaAdLuGgIR0DA0dAe9zwMdX2UKGgGR0Bwe5JPIn0DaAdLtmgIR0DA0e80xdpqdX2UKGgGR0BwOfKU3XI2aAdL1GgIR0DA0hKPjn3ddX2UKGgGR0BwzeQHRkVfaAdLwWgIR0DA0jKtYB/7dX2UKGgGR0BwvGuU2UB5aAdLvWgIR0DA0qRS9/SZdX2UKGgGR0BxBEVmBe5XaAdLxGgIR0DA0sVWn0kGdX2UKGgGR0ByiMAdXDFZaAdLpWgIR0DA0uJWq95AdX2UKGgGR0BlGLsQd0aIaAdN6ANoCEdAwNRDVmz0H3V9lChoBkdAc7kAE+xGD2gHS71oCEdAwNR5jqfOEHV9lChoBkdAcryS1E3KjmgHS8toCEdAwNSrOSGJvnV9lChoBkdAcfBkFwDNhWgHS8RoCEdAwNTRALy+YnV9lChoBkdAZoezO5avBGgHTegDaAhHQMDVz0uDjBF1fZQoaAZHQGHe2u5jH4poB03oA2gIR0DA1ssvVVghdX2UKGgGR0Bx4fEyckMTaAdL1GgIR0DA1z/yGzrvdX2UKGgGR0BwPIxk/bCaaAdLvGgIR0DA11+NJe3QdX2UKGgGR0BwMjxMFlkIaAdLvmgIR0DA14A1FYuCdX2UKGgGR0Bx5TIIWxhVaAdNDwFoCEdAwNes/j81oHV9lChoBkdAck7jEvTPSmgHS79oCEdAwNfNiWE9MnV9lChoBkdASOlGgBcRlGgHTegDaAhHQMDYysspXp51fZQoaAZHQGOIvzFuNxVoB03oA2gIR0DA2cpAprk9dX2UKGgGR8BUXdipeeFtaAdLemgIR0DA2k8DZDiPdX2UKGgGR0BEaimdiDujaAdN6ANoCEdAwNut2PDHfnV9lChoBkdAUVbe/Ho5gmgHTegDaAhHQMDcqCYsunN1fZQoaAZHQEAW8Emplz5oB03oA2gIR0DA3VFy1eBydWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 39070, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:14faa1c5884e839c55cdc48153d3239ac32011d10929f87aa4b6330686f3a482
3
- size 146082
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a2f1933769d520da89f2541843c2ef46d69d826c721c8955bd814288a7876da4
3
+ size 145987
ppo-LunarLander-v2/data CHANGED
@@ -4,34 +4,34 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7fcd4d308c10>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fcd4d308ca0>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fcd4d308d30>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fcd4d308dc0>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7fcd4d308e50>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7fcd4d308ee0>",
13
- "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fcd4d308f70>",
14
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fcd4d309000>",
15
- "_predict": "<function ActorCriticPolicy._predict at 0x7fcd4d309090>",
16
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fcd4d309120>",
17
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fcd4d3091b0>",
18
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fcd4d309240>",
19
  "__abstractmethods__": "frozenset()",
20
- "_abc_impl": "<_abc._abc_data object at 0x7fcd4d2fb300>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
24
- "num_timesteps": 1000448,
25
- "_total_timesteps": 1000000,
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
- "start_time": 1684852629410666313,
30
  "learning_rate": 0.0003,
31
  "tensorboard_log": null,
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
- ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAM3QlTto+60/zprnPSrt2L7JPqU7sChvPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
@@ -41,17 +41,17 @@
41
  "_episode_num": 0,
42
  "use_sde": false,
43
  "sde_sample_freq": -1,
44
- "_current_progress_remaining": -0.00044800000000000395,
45
  "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
- ":serialized:": "gAWVNgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGHQ9tEXtSiMAWyUTegDjAF0lEdAohUZc/t6X3V9lChoBkdAbPjnjhky12gHTRcBaAhHQKIV82tMfzV1fZQoaAZHQFmmpA2Q4jtoB03oA2gIR0CiGmCUHIIXdX2UKGgGR0BwkelfqoqDaAdNMgFoCEdAohyo11nuiXV9lChoBkdAcFjLteD3/WgHTSoBaAhHQKIdj3yqdYp1fZQoaAZHQHEZFzltCRhoB01BAWgIR0CiHn49X9zfdX2UKGgGR0Buk5EYwZflaAdNJwFoCEdAoh+dSGahH3V9lChoBkdAcHXsQNCqqGgHTR4BaAhHQKIioXj2i+N1fZQoaAZHQG2I/WMCLdhoB00bAWgIR0CiI9XV09yMdX2UKGgGR0Bx15x82JizaAdNFwFoCEdAoiUJMzuWr3V9lChoBkfAQryRZEDyOWgHS/NoCEdAoiefCAMDwHV9lChoBkdAb/9vaURnOGgHTSsBaAhHQKIohSR8twt1fZQoaAZHQHCL/ddmg8NoB00nAWgIR0CiKW7MxGlRdX2UKGgGR0BtgKGBWgezaAdNDAFoCEdAoipBd6cAinV9lChoBkdAZF8aXrt3OmgHTegDaAhHQKIurwuuiex1fZQoaAZHQG0ugLiMo+hoB00VAWgIR0CiMOzdtVJddX2UKGgGR0Bw4Xj6vaDgaAdNLQFoCEdAojHTWkJrtXV9lChoBkdAcLfcFQl8gWgHTRMBaAhHQKIyqBg/keZ1fZQoaAZHQHC9GkzoEB9oB00ZAWgIR0CiM3mz8gp0dX2UKGgGR0Bkm/k5p8F7aAdN6ANoCEdAojfSynk1dnV9lChoBkdAbsKgieNDMWgHTQkBaAhHQKI59rZ8KHB1fZQoaAZHQHBb9bLU1AJoB00tAWgIR0CiOuXzcynDdX2UKGgGR0Bi+ME/0NBoaAdN6ANoCEdAokEZ+MIeHXV9lChoBkdAcZvIuGsV+WgHTRMBaAhHQKJCUlpGnXN1fZQoaAZHQG39qCYkVvdoB00mAWgIR0CiRLokqto0dX2UKGgGR0Bx2lz90ihWaAdL/WgIR0CiRXrqUu+RdX2UKGgGR0BvPNrbg0j1aAdNEwFoCEdAokZMGcFyJnV9lChoBkdAYu8zzErGzmgHTegDaAhHQKJKo0hNdqt1fZQoaAZHQG/8yksSTQpoB00CAWgIR0CiS16I3zczdX2UKGgGR0Bx4Ga5PM0QaAdNRgFoCEdAok2oEdNnG3V9lChoBkdAbgr1J17pmmgHTQcBaAhHQKJObA9FF2F1fZQoaAZHQGPo4nOSntRoB03oA2gIR0CiUtBxgiNbdX2UKGgGR0BwYvFqBVdYaAdNGwFoCEdAolOm1c+qznV9lChoBkdAcuBR0lqrR2gHTRUBaAhHQKJUe3c580F1fZQoaAZHQGNaX/HYHxBoB03oA2gIR0CiWaN1hb4bdX2UKGgGR0BfgnwXqJMyaAdN6ANoCEdAol/M25xzaXV9lChoBkdAcHWFS88La2gHTR8BaAhHQKJh+aR6nix1fZQoaAZHQHIS3NPgvUVoB00WAWgIR0CiYseXAuZkdX2UKGgGR0BxpobOu7pWaAdNPAFoCEdAomO4YYR/VnV9lChoBkdAcZ+YU34sVmgHTSQBaAhHQKJkkDHwPRR1fZQoaAZHQHGNJrtVrARoB0vtaAhHQKJmnv2oNut1fZQoaAZHQGwkIGpuMuRoB00hAWgIR0CiZ3kNOM2ndX2UKGgGR0BxrYoAn2IwaAdNIwFoCEdAomhVygf2b3V9lChoBkdAcLOPQOWjXWgHTRQBaAhHQKJqhGRV6u51fZQoaAZHQG+aneizsyBoB0v2aAhHQKJrRUUfxMF1fZQoaAZHQG/K2bobGWFoB00iAWgIR0CibB3CCSRsdX2UKGgGR0BwR0FQl8gIaAdNLwFoCEdAomz+2y9mH3V9lChoBkdAcOm2vStvGmgHTT4BaAhHQKJvQOUdJat1fZQoaAZHQGdrBy8zyjJoB03oA2gIR0Cic7LHU+cIdX2UKGgGR0Bxn2NwR5C4aAdN7wFoCEdAonWiXhOxjnV9lChoBkdAcxKOx0MgEGgHS/RoCEdAonalLeyiVXV9lChoBkdAYVDVmz0HyGgHTegDaAhHQKJ8kaAFxGV1fZQoaAZHQHE98urZJ05oB00xAWgIR0CiftS39aUzdX2UKGgGR0BxGQd3jdYXaAdNCQFoCEdAon+YwTM7l3V9lChoBkdAZBgxVQyhz2gHTegDaAhHQKKD/KOktVd1fZQoaAZHQGxIOO801qFoB00NAWgIR0CihMbkGRmsdX2UKGgGR0Bwe9PfsNUgaAdNIAFoCEdAooWff0mMO3V9lChoBkdAcGrhAWznimgHTQgBaAhHQKKHtV09yLh1fZQoaAZHQHC9x8YyfthoB00FAWgIR0CiiHbAUL2IdX2UKGgGR0Buu+lImPYGaAdNGgFoCEdAoolCVrylN3V9lChoBkfABvLLZBcAzmgHS7RoCEdAoonGloDgZXV9lChoBkdAcO08fms/6mgHTRYBaAhHQKKL3kDp1Rt1fZQoaAZHQHCXRF/hESdoB00JAWgIR0CijKOrZJ05dX2UKGgGR0Bv80URFqi5aAdNCgFoCEdAoo1jOeJ53XV9lChoBkdAbmiNz8xbjmgHTRMBaAhHQKKON1anrIJ1fZQoaAZHQHBahbnoxHpoB00vAWgIR0CikOKfvnbJdX2UKGgGR0BtbnLcKw6iaAdNEQFoCEdAopHu38XN1XV9lChoBkdAcRtMw1zhgmgHS/5oCEdAopMGhwl0HXV9lChoBkdAbbwi8nNPg2gHTRQBaAhHQKKWLrOZ9eB1fZQoaAZHQHBOu+Eh7mdoB00RAWgIR0Cil1yHdoFndX2UKGgGR0BvvPG4qgAZaAdNFQFoCEdAopguchC+lHV9lChoBkdAcK3RgZ0jkmgHS/VoCEdAopjkSsbNr3V9lChoBkdAbvJ42S+xnmgHS/NoCEdAopr6CrcTJ3V9lChoBkdAcUjbLU1AJWgHTQIBaAhHQKKbuQg9vCN1fZQoaAZHQG/zraM72ctoB0v6aAhHQKKcdIy0rsl1fZQoaAZHQHDBhOxjawloB00WAWgIR0CinUKbSZ0CdX2UKGgGR0BwSA9GI9DAaAdNDQFoCEdAop9bwazeGnV9lChoBkdAbg74/NZ/1GgHTRoBaAhHQKKgMejEehh1fZQoaAZHQHEdWt6ol2NoB0vlaAhHQKKg4Ei+tbN1fZQoaAZHQG8TM052hZhoB0vxaAhHQKKhkiW3Sa51fZQoaAZHQG8tT4cm0E5oB01XAWgIR0Cio+/xtpEhdX2UKGgGR0Bw0jWy1NQCaAdNBAFoCEdAoqS5cmjTKHV9lChoBkdAcNlcC5mRNmgHS/NoCEdAoqVwjbBXS3V9lChoBkdAcKcj5bhWHWgHTRwBaAhHQKKmP/3nIQx1fZQoaAZHQGSKDVH4GlhoB03oA2gIR0Ciqo7ojfNzdX2UKGgGR0BwYV1IRRMwaAdNBwFoCEdAoq0nkFOfunV9lChoBkdAbeVYJ3PiUGgHTRUBaAhHQKKuT9fkWAR1fZQoaAZHQHCSHzlLeyloB00BAWgIR0Cir26Ss8xLdX2UKGgGR0ByAj1Iy0rtaAdL52gIR0CisG7LU1AJdX2UKGgGR0Bu1NqN6w+uaAdNDgFoCEdAorN5kVeruXV9lChoBkdAcg8OlO45LmgHTSUBaAhHQKK0V5rP+n91fZQoaAZHQGG4CobXHzZoB03oA2gIR0CiuLQDmr80dX2UKGgGR0BwKF5KODJ2aAdNGgFoCEdAormNN5+pfnV9lChoBkdAcHf0/4ZdfWgHTQUBaAhHQKK6TyR0U491fZQoaAZHQHDc03juKGdoB00QAWgIR0CivIS1eBxxdX2UKGgGR0BvRMLc9GI9aAdNJgFoCEdAor1h2U0N0HV9lChoBkdAbLHhDPWxyGgHTS0BaAhHQKK+O6ErXlN1fZQoaAZHQHCFko8ZDRdoB00WAWgIR0CiwGZGjKxLdX2UKGgGR0BgbRVhkRSQaAdN6ANoCEdAosS0/QjUu3V9lChoBkdAYDUZmZmZmmgHTegDaAhHQKLHzMdtEXt1ZS4="
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
52
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
  },
54
- "_n_updates": 9770,
55
  "observation_space": {
56
  ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
  ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f36cff1beb0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f36cff1bf40>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f36cff24040>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f36cff240d0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f36cff24160>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f36cff241f0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f36cff24280>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f36cff24310>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f36cff243a0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f36cff24430>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f36cff244c0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f36cff24550>",
19
  "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f36cff17d00>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
24
+ "num_timesteps": 4000768,
25
+ "_total_timesteps": 4000000,
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
+ "start_time": 1684914393488415561,
30
  "learning_rate": 0.0003,
31
  "tensorboard_log": null,
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAFoKsb37LKs/ulvEvjq52L4jqDW+hil8vgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
 
41
  "_episode_num": 0,
42
  "use_sde": false,
43
  "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.00019199999999996997,
45
  "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV7wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGHyvqC6H0uMAWyUTegDjAF0lEdAwL9WKkVN6HV9lChoBkdAci7IRywOfGgHS7NoCEdAwL+Eg/1QInV9lChoBkdAcR7MmWt2cWgHS8RoCEdAwL+160IC2nV9lChoBkdAclbP91loUWgHS79oCEdAwL/lOSntOXV9lChoBkfAffQoPTXrdGgHS3NoCEdAwMADHfdhzHV9lChoBkdAQ15zV+Zw42gHS31oCEdAwMCD0xubZ3V9lChoBkdAcudmplz2e2gHS71oCEdAwMCj4Irvs3V9lChoBkdAcY9obGWD6GgHS9doCEdAwMDIicG1QnV9lChoBkdAcnxLzwtrbmgHS6doCEdAwMDkc+aBqnV9lChoBkdAcStVeruIAWgHS91oCEdAwMEJylvZRXV9lChoBkdAc8Etg8bJfmgHS7loCEdAwMEpMj/uLXV9lChoBkdAccI8E3bVSWgHS7JoCEdAwMGYNIbwSnV9lChoBkdAcIDGY8dPtWgHS71oCEdAwMG3AfuCw3V9lChoBkdAcAFyd4FA3WgHS8hoCEdAwMHX0QK8c3V9lChoBkdAYxWCbtqpLmgHTegDaAhHQMDC0yhi9Zl1fZQoaAZHQG74uSwGGEhoB0u+aAhHQMDC8rDIikh1fZQoaAZHQHHDf9DQZ4xoB0u8aAhHQMDDEmbCrLh1fZQoaAZHQHHG4BzV+ZxoB0vQaAhHQMDDhPPszEd1fZQoaAZHQHPL03GXHBFoB0vaaAhHQMDDqlwtJ4B1fZQoaAZHQHHMeLehwl1oB0voaAhHQMDD0aVUuL91fZQoaAZHQEWgw5/9YOloB0tkaAhHQMDD4mbkOqh1fZQoaAZHQHEEL39JjDtoB0u7aAhHQMDEAlyzXz11fZQoaAZHwEcLw9aEBbRoB0t4aAhHQMDEF0G/vfF1fZQoaAZHQHO2ubExZdRoB0u/aAhHQMDEi1HOKO11fZQoaAZHQHDx1uivgWJoB0vNaAhHQMDEr08FINF1fZQoaAZHQHCQa+zt1IRoB0vHaAhHQMDE0VeSjg11fZQoaAZHQHL1WR3eN1hoB0vIaAhHQMDE8s3ZPEd1fZQoaAZHQG9M3trsSkFoB0vKaAhHQMDFFaN+9al1fZQoaAZHQGdnGMn7YTVoB03oA2gIR0DAxl7FfiPydX2UKGgGR8B0RRdkauOkaAdLaWgIR0DAxnkRjBl+dX2UKGgGR0BovLQ3PzFuaAdN6ANoCEdAwMemRISUT3V9lChoBkdAcZ28wHqu82gHS+FoCEdAwMgbuv2XcHV9lChoBkdAcizRP420iWgHS6poCEdAwMg4dxyXD3V9lChoBkdAcalyjHn2ZmgHS91oCEdAwMhc4qgAZXV9lChoBkdAN0wV9F4LTmgHS2ZoCEdAwMhtstTUAnV9lChoBkdAMseqWC2+f2gHS4ZoCEdAwMiEIKMNt3V9lChoBkdAcl+4W1twaWgHS85oCEdAwMinNDc/MXV9lChoBkdAcpAskIHC42gHS9VoCEdAwMkbrwe/6HV9lChoBkdAcbL+MqBmPGgHS8JoCEdAwMk8pnYg73V9lChoBkdAcKwj4Hoou2gHS9JoCEdAwMlf0T101nV9lChoBkdAcuUGzru6VmgHS9xoCEdAwMmFLgXMyXV9lChoBkdAcGxesPrfL2gHS8xoCEdAwMmpXFtKqXV9lChoBkdAc1UGpMpPRGgHTfgBaAhHQMDKV+jVQRB1fZQoaAZHQHCqpylvZRNoB0vMaAhHQMDKegt4A0d1fZQoaAZHQG+gLuQZGaxoB0uzaAhHQMDKmCaqjrR1fZQoaAZHQGSXMyzolldoB03oA2gIR0DAy5aGDcubdX2UKGgGR0AjIosqaw2VaAdLcmgIR0DAy6li4J/odX2UKGgGR0Bx0uSvC/GmaAdLuGgIR0DAzB04zabndX2UKGgGR0BxgMjC53C9aAdLt2gIR0DAzEdvuPV/dX2UKGgGR0BwfX0g8r7PaAdL5mgIR0DAzHjQE6kqdX2UKGgGR0Bw3/DR+jM3aAdL32gIR0DAzKnrWy1NdX2UKGgGR8CB9FZ9uxbCaAdLcWgIR0DAzMWsmv4edX2UKGgGR0BxR1AlfJFLaAdL2mgIR0DAzXU7QswtdX2UKGgGR0Bx4C6kIomYaAdLxmgIR0DAzafkPtladX2UKGgGR0ByTGyNXHR1aAdLr2gIR0DAzdUdzXBhdX2UKGgGR0BxsU2vStvGaAdL0mgIR0DAzf4a1kUcdX2UKGgGR0BtkK/GlyimaAdLu2gIR0DAzh1s1sLwdX2UKGgGR0BydiLNwBHTaAdLpmgIR0DAzjk3GXHBdX2UKGgGR0BxEzvttyggaAdL0GgIR0DAzq4P5HmSdX2UKGgGR0BuxALy+YdAaAdLwWgIR0DAzs8s189fdX2UKGgGR0BzJbUqhDgJaAdL4mgIR0DAzvjDhtLtdX2UKGgGR0Bu7tkc0cfeaAdLx2gIR0DAzxsSIxgzdX2UKGgGR0ByGE9r433paAdL2mgIR0DAz5eB19v1dX2UKGgGR0Bu2KqU/wAmaAdLwWgIR0DAz7goVmBfdX2UKGgGR0BEtiWE9MbnaAdLjWgIR0DAz9CxiXpodX2UKGgGR0BxVE5cTrVwaAdLwGgIR0DAz/BOzposdX2UKGgGR0Bywywr1/UfaAdL2GgIR0DA0BQdCE6DdX2UKGgGR0By15nwob4raAdLymgIR0DA0DYvpQk5dX2UKGgGR0BG0JQLux8laAdLgmgIR0DA0J8uQIUrdX2UKGgGR8AIZCMPz4DcaAdLYWgIR0DA0K/974SIdX2UKGgGR0BxiWnuRcNZaAdLuWgIR0DA0M81/DtPdX2UKGgGR8BXvqjBVMmGaAdLdWgIR0DA0OOhoM8YdX2UKGgGR0Bw7eHmA9V4aAdL0WgIR0DA0QaF0xM4dX2UKGgGR0A4J63AmAskaAdLlmgIR0DA0R/eSB9UdX2UKGgGR0Bw06OAAhjfaAdLqGgIR0DA0TxWDHwPdX2UKGgGR0Bv3JMFlkH2aAdLxWgIR0DA0bEUXYUWdX2UKGgGR0BzLMK4QSSNaAdLuGgIR0DA0dAe9zwMdX2UKGgGR0Bwe5JPIn0DaAdLtmgIR0DA0e80xdpqdX2UKGgGR0BwOfKU3XI2aAdL1GgIR0DA0hKPjn3ddX2UKGgGR0BwzeQHRkVfaAdLwWgIR0DA0jKtYB/7dX2UKGgGR0BwvGuU2UB5aAdLvWgIR0DA0qRS9/SZdX2UKGgGR0BxBEVmBe5XaAdLxGgIR0DA0sVWn0kGdX2UKGgGR0ByiMAdXDFZaAdLpWgIR0DA0uJWq95AdX2UKGgGR0BlGLsQd0aIaAdN6ANoCEdAwNRDVmz0H3V9lChoBkdAc7kAE+xGD2gHS71oCEdAwNR5jqfOEHV9lChoBkdAcryS1E3KjmgHS8toCEdAwNSrOSGJvnV9lChoBkdAcfBkFwDNhWgHS8RoCEdAwNTRALy+YnV9lChoBkdAZoezO5avBGgHTegDaAhHQMDVz0uDjBF1fZQoaAZHQGHe2u5jH4poB03oA2gIR0DA1ssvVVghdX2UKGgGR0Bx4fEyckMTaAdL1GgIR0DA1z/yGzrvdX2UKGgGR0BwPIxk/bCaaAdLvGgIR0DA11+NJe3QdX2UKGgGR0BwMjxMFlkIaAdLvmgIR0DA14A1FYuCdX2UKGgGR0Bx5TIIWxhVaAdNDwFoCEdAwNes/j81oHV9lChoBkdAck7jEvTPSmgHS79oCEdAwNfNiWE9MnV9lChoBkdASOlGgBcRlGgHTegDaAhHQMDYysspXp51fZQoaAZHQGOIvzFuNxVoB03oA2gIR0DA2cpAprk9dX2UKGgGR8BUXdipeeFtaAdLemgIR0DA2k8DZDiPdX2UKGgGR0BEaimdiDujaAdN6ANoCEdAwNut2PDHfnV9lChoBkdAUVbe/Ho5gmgHTegDaAhHQMDcqCYsunN1fZQoaAZHQEAW8Emplz5oB03oA2gIR0DA3VFy1eBydWUu"
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
52
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
  },
54
+ "_n_updates": 39070,
55
  "observation_space": {
56
  ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
  ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
ppo-LunarLander-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:5723786034918d0f35a27347d53074242d4a17b803095420471afbeb08e98c99
3
  size 87929
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d783ceb69ea8453d89e61b6040c6c0637df0070577a5430103f639a4a3e4e339
3
  size 87929
ppo-LunarLander-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:0d2189d24452da7a2613de6f107344418bb4d8593704578dc27ddcbd0287b5e1
3
  size 43329
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d2ad443d92a6192ad3b7da2125aa3afecc15c78ed8eb6727104ba144956300d9
3
  size 43329
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 231.354786263179, "std_reward": 70.61254953975352, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-23T15:40:26.568358"}
 
1
+ {"mean_reward": 134.48576354144728, "std_reward": 108.35804055297824, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-24T10:12:55.441554"}