techtank commited on
Commit
6e8d43d
1 Parent(s): 1e7b079

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +78 -0
README.md ADDED
@@ -0,0 +1,78 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-nc-4.0
3
+ base_model: MCG-NJU/videomae-base
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ model-index:
9
+ - name: videomae-base-finetuned-ucf101-subset
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # videomae-base-finetuned-ucf101-subset
17
+
18
+ This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 0.1199
21
+ - Accuracy: 0.9714
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 5e-05
41
+ - train_batch_size: 2
42
+ - eval_batch_size: 2
43
+ - seed: 42
44
+ - gradient_accumulation_steps: 4
45
+ - total_train_batch_size: 8
46
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
47
+ - lr_scheduler_type: linear
48
+ - lr_scheduler_warmup_ratio: 0.1
49
+ - training_steps: 600
50
+
51
+ ### Training results
52
+
53
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
54
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
55
+ | 2.2409 | 0.06 | 37 | 2.2371 | 0.1429 |
56
+ | 1.3169 | 1.06 | 75 | 1.1241 | 0.6571 |
57
+ | 0.5831 | 2.06 | 112 | 0.5958 | 0.7857 |
58
+ | 0.5517 | 3.06 | 150 | 0.4112 | 0.8143 |
59
+ | 0.398 | 4.06 | 187 | 0.3376 | 0.8429 |
60
+ | 0.1959 | 5.06 | 225 | 0.4228 | 0.8857 |
61
+ | 0.1159 | 6.06 | 262 | 0.3382 | 0.8571 |
62
+ | 0.015 | 7.06 | 300 | 0.3205 | 0.9 |
63
+ | 0.0316 | 8.06 | 337 | 0.3495 | 0.8857 |
64
+ | 0.0242 | 9.06 | 375 | 0.1675 | 0.9429 |
65
+ | 0.005 | 10.06 | 412 | 0.2990 | 0.9286 |
66
+ | 0.0047 | 11.06 | 450 | 0.1553 | 0.9429 |
67
+ | 0.0044 | 12.06 | 487 | 0.1390 | 0.9571 |
68
+ | 0.0039 | 13.06 | 525 | 0.1406 | 0.9429 |
69
+ | 0.0107 | 14.06 | 562 | 0.1184 | 0.9571 |
70
+ | 0.0034 | 15.06 | 600 | 0.1199 | 0.9714 |
71
+
72
+
73
+ ### Framework versions
74
+
75
+ - Transformers 4.31.0
76
+ - Pytorch 2.0.1+cu118
77
+ - Datasets 2.14.0
78
+ - Tokenizers 0.13.3