|
import math |
|
import warnings |
|
from typing import List, Optional, Union, Dict, Any, Tuple |
|
import os |
|
import re |
|
|
|
import numpy as np |
|
import torch |
|
|
|
from transformers.tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy |
|
from transformers.utils import TensorType, logging |
|
from .vibevoice_tokenizer_processor import AudioNormalizer |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class VibeVoiceProcessor: |
|
r""" |
|
Constructs a VibeVoice processor which wraps a VibeVoice tokenizer and audio processor into a single processor. |
|
|
|
[`VibeVoiceProcessor`] offers all the functionalities of [`VibeVoiceTokenizer`] and [`VibeVoiceTokenizerProcessor`]. |
|
See the [`~VibeVoiceProcessor.__call__`] and [`~VibeVoiceProcessor.decode`] for more information. |
|
|
|
Args: |
|
tokenizer (`VibeVoiceTextTokenizer` or `VibeVoiceTextTokenizerFast`): |
|
The tokenizer for text processing. |
|
audio_processor (`VibeVoiceTokenizerProcessor`): |
|
The audio processor for speech processing. |
|
speech_tok_compress_ratio (`int`, *optional*, defaults to 3200): |
|
The compression ratio for speech tokenization. |
|
db_normalize (`bool`, *optional*, defaults to True): |
|
Whether to apply decibel normalization to audio inputs. |
|
""" |
|
|
|
def __init__(self, tokenizer=None, audio_processor=None, speech_tok_compress_ratio=3200, db_normalize=True, **kwargs): |
|
self.tokenizer = tokenizer |
|
self.audio_processor = audio_processor |
|
self.speech_tok_compress_ratio = speech_tok_compress_ratio |
|
self.db_normalize = db_normalize |
|
self.audio_normalizer = AudioNormalizer() if db_normalize else None |
|
self.system_prompt = " Transform the text provided by various speakers into speech output, utilizing the distinct voice of each respective speaker.\n" |
|
|
|
@classmethod |
|
def from_pretrained(cls, pretrained_model_name_or_path, **kwargs): |
|
""" |
|
Instantiate a VibeVoiceProcessor from a pretrained VibeVoice processor. |
|
|
|
Args: |
|
pretrained_model_name_or_path (`str` or `os.PathLike`): |
|
This can be either: |
|
- a string, the *model id* of a pretrained model |
|
- a path to a *directory* containing processor config |
|
|
|
Returns: |
|
[`VibeVoiceProcessor`]: The processor object instantiated from pretrained model. |
|
""" |
|
import os |
|
import json |
|
from transformers.utils import cached_file |
|
from .vibevoice_tokenizer_processor import VibeVoiceTokenizerProcessor |
|
from vibevoice.modular.modular_vibevoice_text_tokenizer import ( |
|
VibeVoiceTextTokenizer, |
|
VibeVoiceTextTokenizerFast |
|
) |
|
|
|
|
|
config_path = os.path.join(pretrained_model_name_or_path, "preprocessor_config.json") |
|
config = None |
|
|
|
if os.path.exists(config_path): |
|
|
|
with open(config_path, 'r') as f: |
|
config = json.load(f) |
|
else: |
|
|
|
try: |
|
config_file = cached_file( |
|
pretrained_model_name_or_path, |
|
"preprocessor_config.json", |
|
**kwargs |
|
) |
|
with open(config_file, 'r') as f: |
|
config = json.load(f) |
|
except Exception as e: |
|
logger.warning(f"Could not load preprocessor_config.json from {pretrained_model_name_or_path}: {e}") |
|
logger.warning("Using default configuration") |
|
config = { |
|
"speech_tok_compress_ratio": 3200, |
|
"db_normalize": True, |
|
} |
|
|
|
|
|
speech_tok_compress_ratio = config.get("speech_tok_compress_ratio", 3200) |
|
db_normalize = config.get("db_normalize", True) |
|
|
|
|
|
language_model_pretrained_name = config.get("language_model_pretrained_name", None) or kwargs.pop("language_model_pretrained_name", "Qwen/Qwen2.5-1.5B") |
|
logger.info(f"Loading tokenizer from {language_model_pretrained_name}") |
|
if 'qwen' in language_model_pretrained_name.lower(): |
|
tokenizer = VibeVoiceTextTokenizerFast.from_pretrained( |
|
language_model_pretrained_name, |
|
**kwargs |
|
) |
|
else: |
|
raise ValueError(f"Unsupported tokenizer type for {language_model_pretrained_name}. Supported types: Qwen, Llama, Gemma.") |
|
|
|
|
|
if "audio_processor" in config: |
|
|
|
audio_config = config["audio_processor"] |
|
audio_processor = VibeVoiceTokenizerProcessor( |
|
sampling_rate=audio_config.get("sampling_rate", 24000), |
|
normalize_audio=audio_config.get("normalize_audio", True), |
|
target_dB_FS=audio_config.get("target_dB_FS", -25), |
|
eps=audio_config.get("eps", 1e-6), |
|
) |
|
else: |
|
|
|
audio_processor = VibeVoiceTokenizerProcessor() |
|
|
|
|
|
return cls( |
|
tokenizer=tokenizer, |
|
audio_processor=audio_processor, |
|
speech_tok_compress_ratio=speech_tok_compress_ratio, |
|
db_normalize=db_normalize, |
|
) |
|
|
|
def save_pretrained(self, save_directory: Union[str, os.PathLike], **kwargs): |
|
""" |
|
Save a processor to a directory, so that it can be re-loaded using the |
|
[`~VibeVoiceProcessor.from_pretrained`] class method. |
|
|
|
Args: |
|
save_directory (`str` or `os.PathLike`): |
|
Directory where the processor will be saved. |
|
""" |
|
import os |
|
import json |
|
|
|
os.makedirs(save_directory, exist_ok=True) |
|
|
|
|
|
processor_config = { |
|
"processor_class": "VibeVoiceProcessor", |
|
"speech_tok_compress_ratio": self.speech_tok_compress_ratio, |
|
"db_normalize": self.db_normalize, |
|
"audio_processor": { |
|
"feature_extractor_type": "VibeVoiceTokenizerProcessor", |
|
"sampling_rate": getattr(self.audio_processor, 'sampling_rate', 24000), |
|
"normalize_audio": getattr(self.audio_processor, 'normalize_audio', True), |
|
"target_dB_FS": getattr(self.audio_processor, 'target_dB_FS', -25), |
|
"eps": getattr(self.audio_processor, 'eps', 1e-6), |
|
} |
|
} |
|
|
|
config_path = os.path.join(save_directory, "preprocessor_config.json") |
|
with open(config_path, 'w') as f: |
|
json.dump(processor_config, f, indent=2) |
|
|
|
logger.info(f"Processor configuration saved in {config_path}") |
|
|
|
def __call__( |
|
self, |
|
text: Optional[Union[str, List[str], TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None, |
|
voice_samples: Optional[Union[List[Union[str, np.ndarray]], List[List[Union[str, np.ndarray]]]]] = None, |
|
padding: Union[bool, str, PaddingStrategy] = True, |
|
truncation: Union[bool, str, TruncationStrategy] = False, |
|
max_length: Optional[int] = None, |
|
return_tensors: Optional[Union[str, TensorType]] = None, |
|
return_attention_mask: bool = True, |
|
**kwargs, |
|
) -> BatchEncoding: |
|
""" |
|
Main method to process one or more podcast scripts with optional voice samples. |
|
|
|
Args: |
|
text (`str`, `List[str]`): |
|
The input text(s) to process. Can be: |
|
- A single script string |
|
- A list of script strings for batch processing |
|
- A path to a .json or .txt file |
|
- A list of paths |
|
voice_samples (`List[Union[str, np.ndarray]]`, `List[List[Union[str, np.ndarray]]]`, *optional*): |
|
Voice samples for each script. Can be: |
|
- A list of samples for a single script |
|
- A list of lists for batch processing |
|
padding (`bool`, `str` or `PaddingStrategy`, defaults to `True`): |
|
Whether to pad sequences to the same length |
|
truncation (`bool`, `str` or `TruncationStrategy`, defaults to `False`): |
|
Whether to truncate sequences |
|
max_length (`int`, *optional*): |
|
Maximum length of the returned sequences |
|
return_tensors (`str` or `TensorType`, *optional*): |
|
If set, will return tensors of a particular framework |
|
return_attention_mask (`bool`, defaults to `True`): |
|
Whether to return the attention mask |
|
|
|
Returns: |
|
`BatchEncoding`: A BatchEncoding with the following fields: |
|
- **input_ids** -- List of token id sequences or tensor |
|
- **attention_mask** -- List of attention masks or tensor |
|
- **speech_tensors** -- Padded speech inputs (if voice_samples provided) |
|
- **speech_masks** -- Speech masks (if voice_samples provided) |
|
- **speech_input_mask** -- Boolean masks indicating speech token positions |
|
""" |
|
|
|
if isinstance(text, str) or (isinstance(text, list) and len(text) > 0 and not isinstance(text[0], str)): |
|
|
|
texts = [text] |
|
is_batched = False |
|
else: |
|
|
|
texts = text |
|
is_batched = True |
|
|
|
|
|
if voice_samples is not None: |
|
if not is_batched or (isinstance(voice_samples[0], (str, np.ndarray))): |
|
|
|
voice_samples_list = [voice_samples] |
|
else: |
|
|
|
voice_samples_list = voice_samples |
|
else: |
|
voice_samples_list = [None] * len(texts) |
|
|
|
|
|
all_encodings = [] |
|
for text_input, voice_input in zip(texts, voice_samples_list): |
|
encoding = self._process_single(text_input, voice_input) |
|
all_encodings.append(encoding) |
|
|
|
|
|
batch_encoding = self._batch_encode( |
|
all_encodings, |
|
padding=padding, |
|
truncation=truncation, |
|
max_length=max_length, |
|
return_tensors=return_tensors, |
|
return_attention_mask=return_attention_mask, |
|
) |
|
|
|
return batch_encoding |
|
|
|
def _process_single( |
|
self, |
|
text: Union[str, TextInput], |
|
voice_samples: Optional[List[Union[str, np.ndarray]]] = None, |
|
) -> Dict[str, Any]: |
|
"""Process a single podcast script.""" |
|
|
|
script = None |
|
if isinstance(text, str): |
|
|
|
if text.endswith('.json') and os.path.exists(text): |
|
script = self._convert_json_to_script(text) |
|
elif text.endswith('.txt') and os.path.exists(text): |
|
script = self._convert_text_to_script(text) |
|
else: |
|
|
|
script = text |
|
|
|
if script is None: |
|
raise ValueError(f"Could not process input text: {text}") |
|
|
|
|
|
parsed_lines = self._parse_script(script) |
|
all_speakers = list(set(speaker_id for speaker_id, _ in parsed_lines)) |
|
|
|
|
|
|
|
system_tokens = self.tokenizer.encode(self.system_prompt) |
|
|
|
|
|
if voice_samples: |
|
voice_tokens, voice_speech_inputs, voice_speech_masks = self._create_voice_prompt(voice_samples[:len(all_speakers)]) |
|
else: |
|
voice_tokens, voice_speech_inputs, voice_speech_masks = [], [], [] |
|
|
|
|
|
full_tokens = system_tokens + voice_tokens |
|
speech_input_mask = [False] * len(system_tokens) + voice_speech_masks |
|
|
|
|
|
full_tokens += self.tokenizer.encode(' Text input:\n', add_special_tokens=False) |
|
speech_input_mask += [False] * len(self.tokenizer.encode(' Text input:\n', add_special_tokens=False)) |
|
|
|
for speaker_id, speaker_text in parsed_lines: |
|
speaker_text_tokens = self.tokenizer.encode(f" Speaker {speaker_id}:{speaker_text}\n", add_special_tokens=False) |
|
full_tokens += speaker_text_tokens |
|
speech_input_mask += [False] * len(speaker_text_tokens) |
|
|
|
|
|
full_tokens += self.tokenizer.encode(' Speech output:\n', add_special_tokens=False) + [self.tokenizer.speech_start_id] |
|
speech_input_mask += [False] * (len(self.tokenizer.encode(' Speech output:\n', add_special_tokens=False)) + 1) |
|
|
|
return { |
|
"input_ids": full_tokens, |
|
"speech_inputs": voice_speech_inputs if voice_speech_inputs else None, |
|
"speech_input_mask": speech_input_mask, |
|
"parsed_script": parsed_lines, |
|
"all_speakers": all_speakers, |
|
} |
|
|
|
def _batch_encode( |
|
self, |
|
encodings: List[Dict[str, Any]], |
|
padding: Union[bool, str, PaddingStrategy] = True, |
|
truncation: Union[bool, str, TruncationStrategy] = False, |
|
max_length: Optional[int] = None, |
|
return_tensors: Optional[Union[str, TensorType]] = None, |
|
return_attention_mask: bool = True, |
|
) -> BatchEncoding: |
|
"""Combine multiple encodings into a batch with padding.""" |
|
|
|
input_ids_list = [enc["input_ids"] for enc in encodings] |
|
speech_input_masks_list = [enc["speech_input_mask"] for enc in encodings] |
|
|
|
|
|
if isinstance(padding, bool): |
|
padding_strategy = PaddingStrategy.LONGEST if padding else PaddingStrategy.DO_NOT_PAD |
|
elif isinstance(padding, str): |
|
padding_strategy = PaddingStrategy(padding) |
|
else: |
|
padding_strategy = padding |
|
|
|
|
|
if padding_strategy != PaddingStrategy.DO_NOT_PAD: |
|
if padding_strategy == PaddingStrategy.LONGEST: |
|
max_len = max(len(ids) for ids in input_ids_list) |
|
elif padding_strategy == PaddingStrategy.MAX_LENGTH and max_length is not None: |
|
max_len = max_length |
|
else: |
|
max_len = max(len(ids) for ids in input_ids_list) |
|
|
|
|
|
padded_input_ids = [] |
|
attention_masks = [] |
|
padded_speech_input_masks = [] |
|
|
|
for input_ids, speech_mask in zip(input_ids_list, speech_input_masks_list): |
|
|
|
if truncation and len(input_ids) > max_len: |
|
input_ids = input_ids[:max_len] |
|
speech_mask = speech_mask[:max_len] |
|
|
|
|
|
padding_length = max_len - len(input_ids) |
|
|
|
padded_ids = [self.tokenizer.pad_id] * padding_length + input_ids |
|
attention_mask = [0] * padding_length + [1] * len(input_ids) |
|
padded_speech_mask = [False] * padding_length + speech_mask |
|
|
|
padded_input_ids.append(padded_ids) |
|
attention_masks.append(attention_mask) |
|
padded_speech_input_masks.append(padded_speech_mask) |
|
|
|
input_ids_list = padded_input_ids |
|
speech_input_masks_list = padded_speech_input_masks |
|
else: |
|
|
|
attention_masks = [[1] * len(ids) for ids in input_ids_list] if return_attention_mask else None |
|
|
|
|
|
all_speech_inputs = [] |
|
has_speech = False |
|
for enc in encodings: |
|
if enc["speech_inputs"] is not None: |
|
all_speech_inputs.extend(enc["speech_inputs"]) |
|
has_speech = True |
|
|
|
|
|
batch_encoding = BatchEncoding() |
|
|
|
|
|
if return_tensors is not None: |
|
batch_encoding["input_ids"] = torch.tensor(input_ids_list, dtype=torch.long) |
|
if return_attention_mask and attention_masks is not None: |
|
batch_encoding["attention_mask"] = torch.tensor(attention_masks, dtype=torch.long) |
|
batch_encoding["speech_input_mask"] = torch.tensor(speech_input_masks_list, dtype=torch.bool) |
|
else: |
|
batch_encoding["input_ids"] = input_ids_list |
|
if return_attention_mask and attention_masks is not None: |
|
batch_encoding["attention_mask"] = attention_masks |
|
batch_encoding["speech_input_mask"] = speech_input_masks_list |
|
|
|
|
|
if has_speech: |
|
speech_dict = self.prepare_speech_inputs( |
|
all_speech_inputs, |
|
return_tensors=return_tensors, |
|
) |
|
batch_encoding["speech_tensors"] = speech_dict["padded_speeches"] |
|
batch_encoding["speech_masks"] = speech_dict["speech_masks"] |
|
else: |
|
batch_encoding["speech_tensors"] = None |
|
batch_encoding["speech_masks"] = None |
|
|
|
|
|
batch_encoding["parsed_scripts"] = [enc["parsed_script"] for enc in encodings] |
|
batch_encoding["all_speakers_list"] = [enc["all_speakers"] for enc in encodings] |
|
|
|
return batch_encoding |
|
|
|
def _create_voice_prompt( |
|
self, |
|
speaker_samples: List[Union[str, np.ndarray]] |
|
) -> Tuple[List[int], List[np.ndarray], List[bool]]: |
|
""" |
|
Create voice prompt tokens and process audio samples. |
|
|
|
Returns: |
|
tuple: (voice_tokens, voice_speech_inputs, voice_speech_masks) |
|
""" |
|
vae_token_id = self.tokenizer.speech_diffusion_id |
|
|
|
voice_full_tokens = self.tokenizer.encode(' Voice input:\n', add_special_tokens=False) |
|
voice_speech_inputs = [] |
|
voice_speech_masks = [False] * len(voice_full_tokens) |
|
|
|
for speaker_id, speaker_audio in enumerate(speaker_samples): |
|
prefix_tokens = self.tokenizer.encode(f" Speaker {speaker_id}:", add_special_tokens=False) |
|
|
|
|
|
if isinstance(speaker_audio, str): |
|
|
|
wav = self.audio_processor._load_audio_from_path(speaker_audio) |
|
else: |
|
wav = np.array(speaker_audio, dtype=np.float32) |
|
|
|
|
|
if self.db_normalize and self.audio_normalizer: |
|
wav = self.audio_normalizer(wav) |
|
|
|
|
|
|
|
|
|
|
|
vae_tok_len = math.ceil(wav.shape[0] / self.speech_tok_compress_ratio) |
|
|
|
|
|
speaker_tokens = (prefix_tokens + |
|
[self.tokenizer.speech_start_id] + |
|
[vae_token_id] * vae_tok_len + |
|
[self.tokenizer.speech_end_id] + |
|
self.tokenizer.encode('\n', add_special_tokens=False)) |
|
|
|
vae_input_mask = ([False] * len(prefix_tokens) + |
|
[False] + |
|
[True] * vae_tok_len + |
|
[False] + |
|
[False]) |
|
|
|
voice_full_tokens.extend(speaker_tokens) |
|
voice_speech_masks.extend(vae_input_mask) |
|
voice_speech_inputs.append(wav) |
|
|
|
return voice_full_tokens, voice_speech_inputs, voice_speech_masks |
|
|
|
def prepare_speech_inputs( |
|
self, |
|
speech_inputs: List[np.ndarray], |
|
return_tensors: Optional[Union[str, TensorType]] = None, |
|
device: Optional[Union[str, torch.device]] = None, |
|
dtype: Optional[torch.dtype] = None, |
|
) -> Dict[str, Any]: |
|
""" |
|
Prepare speech inputs for model consumption. |
|
|
|
Args: |
|
speech_inputs: List of speech arrays |
|
return_tensors: Output tensor type |
|
device: Device to place tensors on |
|
dtype: Data type for tensors |
|
|
|
Returns: |
|
Dictionary with padded_speeches and speech_masks |
|
""" |
|
if not speech_inputs: |
|
return {"padded_speeches": None, "speech_masks": None} |
|
|
|
|
|
vae_tok_seqlens = [math.ceil(s.shape[0] / self.speech_tok_compress_ratio) for s in speech_inputs] |
|
|
|
max_speech_length = max(s.shape[0] for s in speech_inputs) |
|
|
|
|
|
if speech_inputs[0].ndim == 1: |
|
padded_speeches = np.full((len(speech_inputs), max_speech_length), fill_value=0, dtype=np.float32) |
|
else: |
|
padded_speeches = np.full((len(speech_inputs), max_speech_length, speech_inputs[0].shape[-1]), fill_value=0, dtype=np.float32) |
|
speech_masks = np.zeros((len(speech_inputs), max(vae_tok_seqlens)), dtype=np.bool_) |
|
|
|
for i, (speech, vae_tok_length) in enumerate(zip(speech_inputs, vae_tok_seqlens)): |
|
padded_speeches[i, :len(speech)] = speech |
|
speech_masks[i, :vae_tok_length] = True |
|
|
|
result = { |
|
"padded_speeches": padded_speeches, |
|
"speech_masks": speech_masks, |
|
} |
|
|
|
|
|
if return_tensors == "pt": |
|
result["padded_speeches"] = torch.tensor(padded_speeches, device=device, dtype=dtype or torch.float32) |
|
result["speech_masks"] = torch.tensor(speech_masks, device=device, dtype=torch.bool) |
|
|
|
return result |
|
|
|
def _convert_json_to_script(self, json_file: str) -> str: |
|
""" |
|
Convert JSON format to script format. |
|
Expected JSON format: |
|
[ |
|
{"speaker": "1", "text": "Hello everyone..."}, |
|
{"speaker": "2", "text": "Great to be here..."} |
|
] |
|
""" |
|
import json |
|
|
|
with open(json_file, 'r', encoding='utf-8') as f: |
|
data = json.load(f) |
|
|
|
if not isinstance(data, list): |
|
raise ValueError("JSON file must contain a list of speaker entries") |
|
|
|
script_lines = [] |
|
for item in data: |
|
if not isinstance(item, dict): |
|
logger.warning(f"Skipping non-dict entry: {item}") |
|
continue |
|
|
|
speaker = item.get('speaker') |
|
text = item.get('text') |
|
|
|
if speaker is None or text is None: |
|
logger.warning(f"Skipping entry missing speaker or text: {item}") |
|
continue |
|
|
|
|
|
try: |
|
speaker_id = int(speaker) |
|
except (ValueError, TypeError): |
|
logger.warning(f"Invalid speaker ID: {speaker}, skipping entry") |
|
continue |
|
|
|
|
|
text = text.strip() |
|
if text: |
|
script_lines.append(f"Speaker {speaker_id}: {text}") |
|
|
|
if not script_lines: |
|
raise ValueError("No valid entries found in JSON file") |
|
|
|
return "\n".join(script_lines) |
|
|
|
def _convert_text_to_script(self, text_file: str) -> str: |
|
""" |
|
Convert text file to script format. |
|
Handles multiple formats: |
|
1. Already formatted as "Speaker X: text" |
|
2. Plain text (assigns to Speaker 1) |
|
|
|
Handles edge cases like multiple colons in a line. |
|
""" |
|
with open(text_file, 'r', encoding='utf-8') as f: |
|
lines = f.readlines() |
|
|
|
script_lines = [] |
|
current_speaker = 1 |
|
|
|
for line in lines: |
|
line = line.strip() |
|
if not line: |
|
continue |
|
|
|
|
|
|
|
speaker_match = re.match(r'^Speaker\s+(\d+)\s*:\s*(.*)$', line, re.IGNORECASE) |
|
|
|
if speaker_match: |
|
speaker_id = int(speaker_match.group(1)) |
|
text = speaker_match.group(2).strip() |
|
if text: |
|
script_lines.append(f"Speaker {speaker_id}: {text}") |
|
else: |
|
|
|
script_lines.append(f"Speaker {current_speaker}: {line}") |
|
|
|
if not script_lines: |
|
raise ValueError("No valid content found in text file") |
|
|
|
return "\n".join(script_lines) |
|
|
|
def _parse_script(self, script: str) -> List[Tuple[int, str]]: |
|
"""Parse script into list of (speaker_id, text) tuples.""" |
|
lines = script.strip().split("\n") |
|
parsed_lines = [] |
|
speaker_ids = [] |
|
|
|
|
|
for line in lines: |
|
if not line.strip(): |
|
continue |
|
|
|
|
|
match = re.match(r'^Speaker\s+(\d+)\s*:\s*(.*)$', line.strip(), re.IGNORECASE) |
|
|
|
if match: |
|
speaker_id = int(match.group(1)) |
|
text = ' ' + match.group(2).strip() |
|
parsed_lines.append((speaker_id, text)) |
|
speaker_ids.append(speaker_id) |
|
else: |
|
logger.warning(f"Could not parse line: '{line}'") |
|
|
|
if not parsed_lines: |
|
raise ValueError("No valid speaker lines found in script") |
|
|
|
|
|
min_speaker_id = min(speaker_ids) |
|
if min_speaker_id > 0: |
|
|
|
normalized_lines = [] |
|
for speaker_id, text in parsed_lines: |
|
normalized_lines.append((speaker_id - 1, text)) |
|
return normalized_lines |
|
else: |
|
|
|
return parsed_lines |
|
|
|
def _merge_inputs(self, text_inputs: BatchEncoding, audio_inputs: Dict) -> BatchEncoding: |
|
"""Merge text and audio inputs into a single BatchEncoding.""" |
|
|
|
merged = BatchEncoding(text_inputs) |
|
|
|
|
|
if "audio" in audio_inputs: |
|
merged["speech_inputs"] = audio_inputs["audio"] |
|
if "streaming" in audio_inputs: |
|
merged["streaming"] = audio_inputs["streaming"] |
|
|
|
return merged |
|
|
|
def batch_decode(self, *args, **kwargs): |
|
""" |
|
This method forwards all its arguments to VibeVoiceTextTokenizer's [`~PreTrainedTokenizer.batch_decode`]. |
|
Please refer to the docstring of this method for more information. |
|
""" |
|
return self.tokenizer.batch_decode(*args, **kwargs) |
|
|
|
def decode(self, *args, **kwargs): |
|
""" |
|
This method forwards all its arguments to VibeVoiceTextTokenizer's [`~PreTrainedTokenizer.decode`]. |
|
Please refer to the docstring of this method for more information. |
|
""" |
|
return self.tokenizer.decode(*args, **kwargs) |
|
|
|
@property |
|
def model_input_names(self): |
|
""" |
|
Return the list of inputs accepted by the model. |
|
""" |
|
tokenizer_input_names = self.tokenizer.model_input_names |
|
audio_processor_input_names = self.audio_processor.model_input_names |
|
return list(dict.fromkeys(tokenizer_input_names + audio_processor_input_names + ["speech_inputs", "speech_input_mask"])) |
|
|
|
def save_audio(self, |
|
audio: Union[torch.Tensor, np.ndarray, List[Union[torch.Tensor, np.ndarray]]], |
|
output_path: str = "output.wav", |
|
sampling_rate: Optional[int] = None, |
|
normalize: bool = False, |
|
batch_prefix: str = "audio_", |
|
) -> str: |
|
""" |
|
Save audio data to a file. |
|
Args: |
|
audio (Union[torch.Tensor, np.ndarray, List[Union[torch.Tensor, np.ndarray]]]): |
|
The audio data to save. Can be a single tensor/array or a list of them. |
|
output_path (str, optional): Path to save the audio file. Defaults to "output.wav". |
|
sampling_rate (int, optional): Sampling rate for the audio. If None, uses the processor's default. |
|
normalize (bool, optional): Whether to normalize the audio before saving. Defaults to False. |
|
batch_prefix (str, optional): Prefix for batch audio files. Defaults to "audio_". |
|
Returns: |
|
str: The path to the saved audio file. |
|
""" |
|
return self.audio_processor.save_audio(audio, output_path=output_path, sampling_rate=sampling_rate, normalize=normalize, batch_prefix=batch_prefix) |
|
|
|
__all__ = [ |
|
"VibeVoiceProcessor", |
|
] |