DewiBrynJones
commited on
Commit
•
ff549fc
1
Parent(s):
8f1b3d0
Update README.md
Browse files
README.md
CHANGED
@@ -1,42 +1,30 @@
|
|
1 |
---
|
2 |
-
language:
|
3 |
-
|
4 |
-
|
5 |
datasets:
|
6 |
-
-
|
|
|
7 |
metrics:
|
8 |
- wer
|
9 |
tags:
|
10 |
- automatic-speech-recognition
|
11 |
- speech
|
12 |
license: apache-2.0
|
13 |
-
|
14 |
-
- name: wav2vec2-xlsr-ft-en-cy
|
15 |
-
results:
|
16 |
-
- task:
|
17 |
-
name: Speech Recognition
|
18 |
-
type: automatic-speech-recognition
|
19 |
-
dataset:
|
20 |
-
name: Common Voice cy
|
21 |
-
type: common_voice
|
22 |
-
args: cy
|
23 |
-
metrics:
|
24 |
-
- name: Test WER
|
25 |
-
type: wer
|
26 |
-
value: 17.70%
|
27 |
---
|
28 |
|
29 |
-
# wav2vec2-xlsr-ft-en
|
30 |
-
|
31 |
-
A speech recognition acoustic model for Welsh and English, fine-tuned from [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) using English/Welsh balanced data derived from version 11 of their respective Common Voice datasets (https://commonvoice.mozilla.org/cy/datasets). Custom bilingual Common Voice train/dev and test splits were built using the scripts at https://github.com/techiaith/docker-commonvoice-custom-splits-builder#introduction
|
32 |
-
|
33 |
-
Source code and scripts for training wav2vec2-xlsr-ft-en-cy can be found at [https://github.com/techiaith/docker-wav2vec2-cy](https://github.com/techiaith/docker-wav2vec2-cy/blob/main/train/fine-tune/python/run_en_cy.sh).
|
34 |
-
|
35 |
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
## Usage
|
38 |
|
39 |
-
The wav2vec2-xlsr-ft-en
|
40 |
|
41 |
```python
|
42 |
import torch
|
@@ -45,8 +33,8 @@ import librosa
|
|
45 |
|
46 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
47 |
|
48 |
-
processor = Wav2Vec2Processor.from_pretrained("techiaith/wav2vec2-xlsr-ft-en
|
49 |
-
model = Wav2Vec2ForCTC.from_pretrained("techiaith/wav2vec2-xlsr-ft-en
|
50 |
|
51 |
audio, rate = librosa.load(audio_file, sr=16000)
|
52 |
|
@@ -61,16 +49,3 @@ predicted_ids = torch.argmax(logits, dim=-1)
|
|
61 |
print("Prediction:", processor.batch_decode(predicted_ids))
|
62 |
|
63 |
```
|
64 |
-
|
65 |
-
## Evaluation
|
66 |
-
|
67 |
-
|
68 |
-
According to a balanced English+Welsh test set derived from Common Voice version 11, the WER of techiaith/wav2vec2-xlsr-ft-en-cy is **17.7%**
|
69 |
-
|
70 |
-
However, when evaluated with language specific test sets, the model exhibits a bias to perform better with Welsh.
|
71 |
-
|
72 |
-
| Common Voice Test Set Language | WER | CER |
|
73 |
-
| -------- | --- | --- |
|
74 |
-
| EN+CY | 17.07| 7.32 |
|
75 |
-
| EN | 27.54 | 11.6 |
|
76 |
-
| CY | 7.13 | 2.2 |
|
|
|
1 |
---
|
2 |
+
language:
|
3 |
+
- cy
|
4 |
+
- en
|
5 |
datasets:
|
6 |
+
- techiaith/banc-trawsgrifiadau-bangor
|
7 |
+
- techiaith/commonvoice_16_1_en_cy
|
8 |
metrics:
|
9 |
- wer
|
10 |
tags:
|
11 |
- automatic-speech-recognition
|
12 |
- speech
|
13 |
license: apache-2.0
|
14 |
+
pipeline_tag: automatic-speech-recognition
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
---
|
16 |
|
17 |
+
# wav2vec2-xlsr-ft-cy-en
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
+
An acoustic encoder model for Welsh and English speech recognition, fine-tuned from
|
20 |
+
[facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) using transcribed
|
21 |
+
spontaneous speech from
|
22 |
+
[techiaith/banc-trawsgrifiadau-bangor (v24.01)](https://huggingface.co/datasets/techiaith/banc-trawsgrifiadau-bangor/tree/24.01)
|
23 |
+
as well as Welsh and English speech data derived from version 16.1 the Common Voice datasets [techiaith/commonvoice_16_1_en_cy](https://huggingface.co/datasets/techiaith/commonvoice_16_1_en_cy)
|
24 |
|
25 |
## Usage
|
26 |
|
27 |
+
The wav2vec2-xlsr-ft-cy-en model can be used directly as follows:
|
28 |
|
29 |
```python
|
30 |
import torch
|
|
|
33 |
|
34 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
35 |
|
36 |
+
processor = Wav2Vec2Processor.from_pretrained("techiaith/wav2vec2-xlsr-ft-cy-en")
|
37 |
+
model = Wav2Vec2ForCTC.from_pretrained("techiaith/wav2vec2-xlsr-ft-cy-en")
|
38 |
|
39 |
audio, rate = librosa.load(audio_file, sr=16000)
|
40 |
|
|
|
49 |
print("Prediction:", processor.batch_decode(predicted_ids))
|
50 |
|
51 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|