DewiBrynJones
commited on
Commit
•
a700171
1
Parent(s):
3482f63
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- banc-trawsgrifiadau-bangor
|
7 |
+
metrics:
|
8 |
+
- wer
|
9 |
+
model-index:
|
10 |
+
- name: wav2vec2-xlsr-ft-btb
|
11 |
+
results:
|
12 |
+
- task:
|
13 |
+
name: Automatic Speech Recognition
|
14 |
+
type: automatic-speech-recognition
|
15 |
+
dataset:
|
16 |
+
name: banc-trawsgrifiadau-bangor
|
17 |
+
type: banc-trawsgrifiadau-bangor
|
18 |
+
config: default
|
19 |
+
split: test
|
20 |
+
args: default
|
21 |
+
metrics:
|
22 |
+
- name: Wer
|
23 |
+
type: wer
|
24 |
+
value: 0.3264155718657249
|
25 |
+
---
|
26 |
+
|
27 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
28 |
+
should probably proofread and complete it, then remove this comment. -->
|
29 |
+
|
30 |
+
# wav2vec2-xlsr-ft-btb
|
31 |
+
|
32 |
+
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the banc-trawsgrifiadau-bangor dataset.
|
33 |
+
It achieves the following results on the evaluation set:
|
34 |
+
- Loss: 0.4358
|
35 |
+
- Wer: 0.3264
|
36 |
+
|
37 |
+
## Model description
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Intended uses & limitations
|
42 |
+
|
43 |
+
More information needed
|
44 |
+
|
45 |
+
## Training and evaluation data
|
46 |
+
|
47 |
+
More information needed
|
48 |
+
|
49 |
+
## Training procedure
|
50 |
+
|
51 |
+
### Training hyperparameters
|
52 |
+
|
53 |
+
The following hyperparameters were used during training:
|
54 |
+
- learning_rate: 0.0003
|
55 |
+
- train_batch_size: 16
|
56 |
+
- eval_batch_size: 8
|
57 |
+
- seed: 42
|
58 |
+
- gradient_accumulation_steps: 2
|
59 |
+
- total_train_batch_size: 32
|
60 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
61 |
+
- lr_scheduler_type: linear
|
62 |
+
- lr_scheduler_warmup_steps: 500
|
63 |
+
- num_epochs: 5.0
|
64 |
+
- mixed_precision_training: Native AMP
|
65 |
+
|
66 |
+
### Training results
|
67 |
+
|
68 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
69 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|
|
70 |
+
| No log | 0.21 | 100 | 3.4135 | 1.0 |
|
71 |
+
| No log | 0.41 | 200 | 2.9521 | 1.0 |
|
72 |
+
| No log | 0.62 | 300 | 2.3339 | 0.9365 |
|
73 |
+
| No log | 0.83 | 400 | 1.2433 | 0.8259 |
|
74 |
+
| 3.1912 | 1.03 | 500 | 0.8614 | 0.6385 |
|
75 |
+
| 3.1912 | 1.24 | 600 | 0.7557 | 0.5612 |
|
76 |
+
| 3.1912 | 1.44 | 700 | 0.6781 | 0.5195 |
|
77 |
+
| 3.1912 | 1.65 | 800 | 0.6363 | 0.4879 |
|
78 |
+
| 3.1912 | 1.86 | 900 | 0.5959 | 0.4559 |
|
79 |
+
| 0.8237 | 2.06 | 1000 | 0.5430 | 0.4260 |
|
80 |
+
| 0.8237 | 2.27 | 1100 | 0.5293 | 0.4098 |
|
81 |
+
| 0.8237 | 2.48 | 1200 | 0.5141 | 0.4056 |
|
82 |
+
| 0.8237 | 2.68 | 1300 | 0.4879 | 0.3947 |
|
83 |
+
| 0.8237 | 2.89 | 1400 | 0.4697 | 0.3788 |
|
84 |
+
| 0.5625 | 3.1 | 1500 | 0.4748 | 0.3780 |
|
85 |
+
| 0.5625 | 3.3 | 1600 | 0.4836 | 0.3684 |
|
86 |
+
| 0.5625 | 3.51 | 1700 | 0.4796 | 0.3625 |
|
87 |
+
| 0.5625 | 3.72 | 1800 | 0.4582 | 0.3515 |
|
88 |
+
| 0.5625 | 3.92 | 1900 | 0.4395 | 0.3437 |
|
89 |
+
| 0.4267 | 4.13 | 2000 | 0.4410 | 0.3420 |
|
90 |
+
| 0.4267 | 4.33 | 2100 | 0.4467 | 0.3382 |
|
91 |
+
| 0.4267 | 4.54 | 2200 | 0.4398 | 0.3329 |
|
92 |
+
| 0.4267 | 4.75 | 2300 | 0.4383 | 0.3287 |
|
93 |
+
| 0.4267 | 4.95 | 2400 | 0.4358 | 0.3264 |
|
94 |
+
|
95 |
+
|
96 |
+
### Framework versions
|
97 |
+
|
98 |
+
- Transformers 4.28.1
|
99 |
+
- Pytorch 2.0.0+cu117
|
100 |
+
- Datasets 2.11.0
|
101 |
+
- Tokenizers 0.13.3
|