Update README.md
Browse files
README.md
CHANGED
@@ -46,8 +46,8 @@ Note that this model is primarily aimed at being fine-tuned on math-related task
|
|
46 |
Here is how to use this model to get the features of a given text in PyTorch:
|
47 |
|
48 |
```from transformers import BertTokenizer, BertModel
|
49 |
-
tokenizer = BertTokenizer.from_pretrained('tbs17/MathBERT
|
50 |
-
model = BertModel.from_pretrained("tbs17/MathBERT
|
51 |
text = "Replace me by any text you'd like."
|
52 |
encoded_input = tokenizer(text, return_tensors='pt')
|
53 |
output = model(encoded_input)
|
@@ -56,8 +56,8 @@ and in TensorFlow:
|
|
56 |
|
57 |
```
|
58 |
from transformers import BertTokenizer, TFBertModel
|
59 |
-
tokenizer = BertTokenizer.from_pretrained('tbs17/MathBERT
|
60 |
-
model = TFBertModel.from_pretrained("tbs17/MathBERT
|
61 |
text = "Replace me by any text you'd like."
|
62 |
encoded_input = tokenizer(text, return_tensors='tf')
|
63 |
output = model(encoded_input)
|
|
|
46 |
Here is how to use this model to get the features of a given text in PyTorch:
|
47 |
|
48 |
```from transformers import BertTokenizer, BertModel
|
49 |
+
tokenizer = BertTokenizer.from_pretrained('tbs17/MathBERT')
|
50 |
+
model = BertModel.from_pretrained("tbs17/MathBERT")
|
51 |
text = "Replace me by any text you'd like."
|
52 |
encoded_input = tokenizer(text, return_tensors='pt')
|
53 |
output = model(encoded_input)
|
|
|
56 |
|
57 |
```
|
58 |
from transformers import BertTokenizer, TFBertModel
|
59 |
+
tokenizer = BertTokenizer.from_pretrained('tbs17/MathBERT')
|
60 |
+
model = TFBertModel.from_pretrained("tbs17/MathBERT")
|
61 |
text = "Replace me by any text you'd like."
|
62 |
encoded_input = tokenizer(text, return_tensors='tf')
|
63 |
output = model(encoded_input)
|