tbooy commited on
Commit
f88cdca
1 Parent(s): b801979

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 268.22 +/- 22.86
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe17c655d80>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe17c655e10>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe17c655ea0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe17c655f30>", "_build": "<function ActorCriticPolicy._build at 0x7fe17c655fc0>", "forward": "<function ActorCriticPolicy.forward at 0x7fe17c656050>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fe17c6560e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe17c656170>", "_predict": "<function ActorCriticPolicy._predict at 0x7fe17c656200>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe17c656290>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe17c656320>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe17c6563b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fe17c7ebe00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1693283092069644446, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAPMoQ76tmLs+Li0DPV7OXr4FovO9PoYIvQAAAAAAAAAAjaKqvUjnpboVn2U7g9hyOFcDbTqREwq6AACAPwAAgD+AM/294VamvC4RkjmRuZy94d0hPqZseD4AAIA/AACAP834UL1cq2O68tcMvB+NHba4A1a6mM+ONQAAgD8AAIA/moRvvSlIZbp7ybgycHd6MPtCXruHgEKzAACAPwAAgD8ALC08RtNaP9ymO76q07W+d3oHvY7CCb4AAAAAAAAAADO9Xz1cTxe44jucOqvsrzV/e6Y6ohe5uQAAgD8AAIA/5jnVvddTT7nDfY25z4BVtJrvj7unaKY4AACAPwAAAABmQis8VHM4Pi3Vwr29baG+HB0YviRzjb0AAAAAAAAAANpY+L1do7s+KDSqvQwqtr4fTMK8OpKaPQAAAAAAAAAAACv1vUjlv7oKIFC8scySPPHU8DuoUH69AACAPwAAgD/m9UY94aKEunrGFr2O3fk1fWcou8ZOYLUAAIA/AACAP5pJlDxF87M/y++RPuDU1L3LhZ07HkOjPQAAAAAAAAAAzcwcOI8ebboa/py6USWOtaGSyjkt+Lc5AACAPwAAgD+mkZs9wxlSuuWiWTVmzd6ur4WMu7F0hbQAAIA/AACAP1qApb1I8YO6w3/puv409LXG0uq6GvsGOgAAAAAAAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVMQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHARKyrxRVKMAWyUTfMCjAF0lEdAjhMhXjlxO3V9lChoBkdAZG6u8scyWWgHTegDaAhHQI4ayzVtoBd1fZQoaAZHQGL+9+PRzBBoB03oA2gIR0COHvTDwYtQdX2UKGgGR0BwyH0Cih38aAdN7QJoCEdAjji1yFPBSHV9lChoBkdAY0aQ8wHqvGgHTegDaAhHQI45BJiAlOZ1fZQoaAZHQGNBECV8kUtoB03oA2gIR0COPZVawD/3dX2UKGgGR0BkKH6TGHYZaAdN6ANoCEdAjka2CmMwUXV9lChoBkdAYAaaP0Zm7WgHTegDaAhHQI50fJNj9XN1fZQoaAZHQGTdhuXNTtNoB03oA2gIR0COd1vphWo4dX2UKGgGR0BiLv13+uNhaAdN6ANoCEdAjnfqgqVhTnV9lChoBkdAYNMWrOqvNmgHTegDaAhHQI56MQ2/BWR1fZQoaAZHQGuGPAoG6f9oB01uAWgIR0COeqB+WnjydX2UKGgGR0BidfkHUtqYaAdN6ANoCEdAjn75Mtbs4XV9lChoBkdAZYEAEMb3oWgHTegDaAhHQI5/hCD28I11fZQoaAZHQGVsxOLzf79oB03oA2gIR0COgI9q1w5vdX2UKGgGR0Bh4GcYqG1yaAdN6ANoCEdAjoV7qhUR4HV9lChoBkdAY2X3lCCz1WgHTegDaAhHQI6HhylvZRN1fZQoaAZHQEveml67dzpoB0vTaAhHQI6JWY0EX+F1fZQoaAZHQDQ7QOWjXWhoB0v1aAhHQI6OplSS/0x1fZQoaAZHQGSibg88s+VoB03oA2gIR0COj1znRsuWdX2UKGgGR0BNGjgydnTRaAdL32gIR0COkW7pV0cPdX2UKGgGR0BgqfDDTBqLaAdN6ANoCEdAjpavLHMlknV9lChoBkdAXvokQf6oEWgHTegDaAhHQI6avQOWjXZ1fZQoaAZHQDyM1ZTyauxoB0vaaAhHQI6mVLDhtLt1fZQoaAZHQGGeYYixFApoB03oA2gIR0COtne8f3evdX2UKGgGR0BluaO/+Kj0aAdN6ANoCEdAjryZQpF1CHV9lChoBkdAZRt4L1EmY2gHTegDaAhHQI7H/CwbEP11fZQoaAZHQGeoZPM0P6NoB03oA2gIR0CO+KGwiaAndX2UKGgGR0BlQ6v3ai9JaAdN6ANoCEdAjvwyJTER8XV9lChoBkdAZXordWQwK2gHTegDaAhHQI7/JtxdY4h1fZQoaAZHQGJKq3VkMCtoB03oA2gIR0CPBLVJcxCZdX2UKGgGR0BkMvBFd9lVaAdN6ANoCEdAjwX/M4cWCXV9lChoBkdAcbQ2RJVbRmgHTfMCaAhHQI8Hlg6U7jl1fZQoaAZHQGNeGLcbiqBoB03oA2gIR0CPC7T850bMdX2UKGgGR0BiA0e2d/ayaAdN6ANoCEdAjw3oEB8x9HV9lChoBkdAZjWIfr8iwGgHTegDaAhHQI8P3CGetjl1fZQoaAZHQGYaNOM2m51oB03oA2gIR0CPFT4Oc2BKdX2UKGgGR0Bjy+dK/VRUaAdN6ANoCEdAjxXvd/J/5XV9lChoBkdAS0nGZNO/L2gHS+xoCEdAjxx5jx0+1XV9lChoBkdAYeIdkJ8fFWgHTegDaAhHQI8hwmTkhid1fZQoaAZHQDZruJDVpbloB0vmaAhHQI8lOj0th/l1fZQoaAZHQETAgOjIq9ZoB0u8aAhHQI8oKn5zo2Z1fZQoaAZHQHCRz+WGATZoB01RA2gIR0CPLHZ6lchUdX2UKGgGR0BhhzW/ag27aAdN6ANoCEdAjy1nXd0q6XV9lChoBkdAQ9kh1Tzd12gHS91oCEdAjzps1CPZI3V9lChoBkdARJuyu6mO2mgHS9NoCEdAjzxxM36yjnV9lChoBkdAZK1kc0cfeWgHTegDaAhHQI8/9zp5eJJ1fZQoaAZHQGUCyHmA9V5oB03oA2gIR0CPSplWfbsXdX2UKGgGR0BwRhgogFHKaAdNfQJoCEdAj3N3tKIznHV9lChoBkdATzKzXz19OWgHS9xoCEdAj3X3sHB1tHV9lChoBkdAbqZJI1+AmWgHTWoDaAhHQI94ih6By0d1fZQoaAZHQGUzwrUb1h9oB03oA2gIR0CPeZW912aEdX2UKGgGR0BgG/SKFZgYaAdN6ANoCEdAj3xyVnmJWXV9lChoBkdAZXBrO7g882gHTegDaAhHQI9+69M9KVZ1fZQoaAZHQF8wICEHt4RoB03oA2gIR0CPhNE1EVnFdX2UKGgGR0BwxhhNM496aAdNugNoCEdAj4Y+bmU4aXV9lChoBkdAYL1IuoP07WgHTegDaAhHQI+MdrXUYsN1fZQoaAZHQHCw/a+N96VoB01UA2gIR0CPktFglWwNdX2UKGgGR0BvTWpS75EdaAdNHQFoCEdAj5jSro4dZXV9lChoBkdAY/u5Gz8gp2gHTegDaAhHQI+cZTfixV11fZQoaAZHQE1kAggX/HZoB0vQaAhHQI+gch9srNJ1fZQoaAZHQHB1Ak5ZKWdoB03/AWgIR0CPoxpB5X2edX2UKGgGR0Bu38d1dPcjaAdNWQFoCEdAj6ak9U0el3V9lChoBkdAY6YJ5VwPy2gHTegDaAhHQI+rDBqKxcF1fZQoaAZHQF6tPXCj1wpoB03oA2gIR0CPq9wrlNlAdX2UKGgGR0BUQ7S7Xg+AaAdLz2gIR0CPruQT238XdX2UKGgGR0Buz+tfXwsoaAdN0wNoCEdAj7c9Aood/HV9lChoBkdAZGRFI/Z/TmgHTegDaAhHQI+3aziS7oV1fZQoaAZHQDEB1LamGdtoB0v+aAhHQI+8BeXzDoB1fZQoaAZHQGPaXnIQvpRoB03oA2gIR0CPxN/Tb349dX2UKGgGR0BsxT5ZbILgaAdNGgJoCEdAj8iMl9jPOnV9lChoBkdAQA4Lb5/LDGgHS9NoCEdAj+1JTER8MXV9lChoBkdAYi8x7AtWdWgHTegDaAhHQI/t+VeKKpF1fZQoaAZHQGHZQcxTKkloB03oA2gIR0CP8DKB/ZuidX2UKGgGR0BmzBBPbfxdaAdN6ANoCEdAj/EXdj5KvnV9lChoBkdAcOe8+A3DN2gHTTkCaAhHQI/yc/Spiqh1fZQoaAZHQGMXla0QbuNoB03oA2gIR0CP83OFg2IgdX2UKGgGR0Bx1QYYR/ViaAdNigFoCEdAj/cWwFC9iHV9lChoBkdAcRvymhufmWgHTS0DaAhHQI/4I88s+V11fZQoaAZHQD3dWT5ftyBoB0vaaAhHQI/4WG47Rv51fZQoaAZHQG0y3JYDDCRoB00dAWgIR0CP+gicG1QZdX2UKGgGR0BkH1Xo1UEQaAdN6ANoCEdAj/oaE8JUpHV9lChoBkdARBNsguAZsWgHS8poCEdAj/wqlxffGnV9lChoBkdAbhLbSJCSimgHTdwCaAhHQJABrtWuHN51fZQoaAZHQEN3X2dupCNoB0vZaAhHQJAC0RODaoN1fZQoaAZHQELUz6ab4JxoB0vlaAhHQJAG/3cpLEl1fZQoaAZHQGU4+FtbcGloB03oA2gIR0CQCGpzcRDkdX2UKGgGR0BjpevpyIYWaAdN6ANoCEdAkA61qagElnV9lChoBkdAbz1qNZNfxGgHTcMDaAhHQJAOwumJm/Z1fZQoaAZHQHD4oAOrhitoB02FAmgIR0CQETQFs54odX2UKGgGR0ByMWuA7PpqaAdN4wNoCEdAkBULEk0JnnV9lChoBkdAb0PDn/1g6WgHTUwCaAhHQJAVYF8ohIR1fZQoaAZHQHIfThtLteFoB02QAWgIR0CQFdgBcRlIdX2UKGgGR0BxWs1baAWjaAdNRQJoCEdAkBYpZjhDPXV9lChoBkdAca7N0NjLCGgHTWoCaAhHQJAWdgx8D0V1fZQoaAZHQHCnSyUs4DNoB00LA2gIR0CQGG6QeV9ndX2UKGgGR0BwUnUiILw4aAdNewFoCEdAkBm7AHmig3V9lChoBkdAblUb4rSVnmgHTRcCaAhHQJAZ6lxffGd1fZQoaAZHQG5uFxXGOuJoB000AWgIR0CQG9azNUwSdX2UKGgGR0A/sr6LwWnCaAdL+GgIR0CQH5v1lGwzdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dd0ca524fe276ee7cc428c9c4aed83107d4fdeb67ec8a3c534f5fe5339a85a21
3
+ size 146730
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe17c655d80>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe17c655e10>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe17c655ea0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe17c655f30>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fe17c655fc0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fe17c656050>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fe17c6560e0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe17c656170>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fe17c656200>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe17c656290>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe17c656320>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe17c6563b0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7fe17c7ebe00>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1693283092069644446,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAPMoQ76tmLs+Li0DPV7OXr4FovO9PoYIvQAAAAAAAAAAjaKqvUjnpboVn2U7g9hyOFcDbTqREwq6AACAPwAAgD+AM/294VamvC4RkjmRuZy94d0hPqZseD4AAIA/AACAP834UL1cq2O68tcMvB+NHba4A1a6mM+ONQAAgD8AAIA/moRvvSlIZbp7ybgycHd6MPtCXruHgEKzAACAPwAAgD8ALC08RtNaP9ymO76q07W+d3oHvY7CCb4AAAAAAAAAADO9Xz1cTxe44jucOqvsrzV/e6Y6ohe5uQAAgD8AAIA/5jnVvddTT7nDfY25z4BVtJrvj7unaKY4AACAPwAAAABmQis8VHM4Pi3Vwr29baG+HB0YviRzjb0AAAAAAAAAANpY+L1do7s+KDSqvQwqtr4fTMK8OpKaPQAAAAAAAAAAACv1vUjlv7oKIFC8scySPPHU8DuoUH69AACAPwAAgD/m9UY94aKEunrGFr2O3fk1fWcou8ZOYLUAAIA/AACAP5pJlDxF87M/y++RPuDU1L3LhZ07HkOjPQAAAAAAAAAAzcwcOI8ebboa/py6USWOtaGSyjkt+Lc5AACAPwAAgD+mkZs9wxlSuuWiWTVmzd6ur4WMu7F0hbQAAIA/AACAP1qApb1I8YO6w3/puv409LXG0uq6GvsGOgAAAAAAAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVMQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHARKyrxRVKMAWyUTfMCjAF0lEdAjhMhXjlxO3V9lChoBkdAZG6u8scyWWgHTegDaAhHQI4ayzVtoBd1fZQoaAZHQGL+9+PRzBBoB03oA2gIR0COHvTDwYtQdX2UKGgGR0BwyH0Cih38aAdN7QJoCEdAjji1yFPBSHV9lChoBkdAY0aQ8wHqvGgHTegDaAhHQI45BJiAlOZ1fZQoaAZHQGNBECV8kUtoB03oA2gIR0COPZVawD/3dX2UKGgGR0BkKH6TGHYZaAdN6ANoCEdAjka2CmMwUXV9lChoBkdAYAaaP0Zm7WgHTegDaAhHQI50fJNj9XN1fZQoaAZHQGTdhuXNTtNoB03oA2gIR0COd1vphWo4dX2UKGgGR0BiLv13+uNhaAdN6ANoCEdAjnfqgqVhTnV9lChoBkdAYNMWrOqvNmgHTegDaAhHQI56MQ2/BWR1fZQoaAZHQGuGPAoG6f9oB01uAWgIR0COeqB+WnjydX2UKGgGR0BidfkHUtqYaAdN6ANoCEdAjn75Mtbs4XV9lChoBkdAZYEAEMb3oWgHTegDaAhHQI5/hCD28I11fZQoaAZHQGVsxOLzf79oB03oA2gIR0COgI9q1w5vdX2UKGgGR0Bh4GcYqG1yaAdN6ANoCEdAjoV7qhUR4HV9lChoBkdAY2X3lCCz1WgHTegDaAhHQI6HhylvZRN1fZQoaAZHQEveml67dzpoB0vTaAhHQI6JWY0EX+F1fZQoaAZHQDQ7QOWjXWhoB0v1aAhHQI6OplSS/0x1fZQoaAZHQGSibg88s+VoB03oA2gIR0COj1znRsuWdX2UKGgGR0BNGjgydnTRaAdL32gIR0COkW7pV0cPdX2UKGgGR0BgqfDDTBqLaAdN6ANoCEdAjpavLHMlknV9lChoBkdAXvokQf6oEWgHTegDaAhHQI6avQOWjXZ1fZQoaAZHQDyM1ZTyauxoB0vaaAhHQI6mVLDhtLt1fZQoaAZHQGGeYYixFApoB03oA2gIR0COtne8f3evdX2UKGgGR0BluaO/+Kj0aAdN6ANoCEdAjryZQpF1CHV9lChoBkdAZRt4L1EmY2gHTegDaAhHQI7H/CwbEP11fZQoaAZHQGeoZPM0P6NoB03oA2gIR0CO+KGwiaAndX2UKGgGR0BlQ6v3ai9JaAdN6ANoCEdAjvwyJTER8XV9lChoBkdAZXordWQwK2gHTegDaAhHQI7/JtxdY4h1fZQoaAZHQGJKq3VkMCtoB03oA2gIR0CPBLVJcxCZdX2UKGgGR0BkMvBFd9lVaAdN6ANoCEdAjwX/M4cWCXV9lChoBkdAcbQ2RJVbRmgHTfMCaAhHQI8Hlg6U7jl1fZQoaAZHQGNeGLcbiqBoB03oA2gIR0CPC7T850bMdX2UKGgGR0BiA0e2d/ayaAdN6ANoCEdAjw3oEB8x9HV9lChoBkdAZjWIfr8iwGgHTegDaAhHQI8P3CGetjl1fZQoaAZHQGYaNOM2m51oB03oA2gIR0CPFT4Oc2BKdX2UKGgGR0Bjy+dK/VRUaAdN6ANoCEdAjxXvd/J/5XV9lChoBkdAS0nGZNO/L2gHS+xoCEdAjxx5jx0+1XV9lChoBkdAYeIdkJ8fFWgHTegDaAhHQI8hwmTkhid1fZQoaAZHQDZruJDVpbloB0vmaAhHQI8lOj0th/l1fZQoaAZHQETAgOjIq9ZoB0u8aAhHQI8oKn5zo2Z1fZQoaAZHQHCRz+WGATZoB01RA2gIR0CPLHZ6lchUdX2UKGgGR0BhhzW/ag27aAdN6ANoCEdAjy1nXd0q6XV9lChoBkdAQ9kh1Tzd12gHS91oCEdAjzps1CPZI3V9lChoBkdARJuyu6mO2mgHS9NoCEdAjzxxM36yjnV9lChoBkdAZK1kc0cfeWgHTegDaAhHQI8/9zp5eJJ1fZQoaAZHQGUCyHmA9V5oB03oA2gIR0CPSplWfbsXdX2UKGgGR0BwRhgogFHKaAdNfQJoCEdAj3N3tKIznHV9lChoBkdATzKzXz19OWgHS9xoCEdAj3X3sHB1tHV9lChoBkdAbqZJI1+AmWgHTWoDaAhHQI94ih6By0d1fZQoaAZHQGUzwrUb1h9oB03oA2gIR0CPeZW912aEdX2UKGgGR0BgG/SKFZgYaAdN6ANoCEdAj3xyVnmJWXV9lChoBkdAZXBrO7g882gHTegDaAhHQI9+69M9KVZ1fZQoaAZHQF8wICEHt4RoB03oA2gIR0CPhNE1EVnFdX2UKGgGR0BwxhhNM496aAdNugNoCEdAj4Y+bmU4aXV9lChoBkdAYL1IuoP07WgHTegDaAhHQI+MdrXUYsN1fZQoaAZHQHCw/a+N96VoB01UA2gIR0CPktFglWwNdX2UKGgGR0BvTWpS75EdaAdNHQFoCEdAj5jSro4dZXV9lChoBkdAY/u5Gz8gp2gHTegDaAhHQI+cZTfixV11fZQoaAZHQE1kAggX/HZoB0vQaAhHQI+gch9srNJ1fZQoaAZHQHB1Ak5ZKWdoB03/AWgIR0CPoxpB5X2edX2UKGgGR0Bu38d1dPcjaAdNWQFoCEdAj6ak9U0el3V9lChoBkdAY6YJ5VwPy2gHTegDaAhHQI+rDBqKxcF1fZQoaAZHQF6tPXCj1wpoB03oA2gIR0CPq9wrlNlAdX2UKGgGR0BUQ7S7Xg+AaAdLz2gIR0CPruQT238XdX2UKGgGR0Buz+tfXwsoaAdN0wNoCEdAj7c9Aood/HV9lChoBkdAZGRFI/Z/TmgHTegDaAhHQI+3aziS7oV1fZQoaAZHQDEB1LamGdtoB0v+aAhHQI+8BeXzDoB1fZQoaAZHQGPaXnIQvpRoB03oA2gIR0CPxN/Tb349dX2UKGgGR0BsxT5ZbILgaAdNGgJoCEdAj8iMl9jPOnV9lChoBkdAQA4Lb5/LDGgHS9NoCEdAj+1JTER8MXV9lChoBkdAYi8x7AtWdWgHTegDaAhHQI/t+VeKKpF1fZQoaAZHQGHZQcxTKkloB03oA2gIR0CP8DKB/ZuidX2UKGgGR0BmzBBPbfxdaAdN6ANoCEdAj/EXdj5KvnV9lChoBkdAcOe8+A3DN2gHTTkCaAhHQI/yc/Spiqh1fZQoaAZHQGMXla0QbuNoB03oA2gIR0CP83OFg2IgdX2UKGgGR0Bx1QYYR/ViaAdNigFoCEdAj/cWwFC9iHV9lChoBkdAcRvymhufmWgHTS0DaAhHQI/4I88s+V11fZQoaAZHQD3dWT5ftyBoB0vaaAhHQI/4WG47Rv51fZQoaAZHQG0y3JYDDCRoB00dAWgIR0CP+gicG1QZdX2UKGgGR0BkH1Xo1UEQaAdN6ANoCEdAj/oaE8JUpHV9lChoBkdARBNsguAZsWgHS8poCEdAj/wqlxffGnV9lChoBkdAbhLbSJCSimgHTdwCaAhHQJABrtWuHN51fZQoaAZHQEN3X2dupCNoB0vZaAhHQJAC0RODaoN1fZQoaAZHQELUz6ab4JxoB0vlaAhHQJAG/3cpLEl1fZQoaAZHQGU4+FtbcGloB03oA2gIR0CQCGpzcRDkdX2UKGgGR0BjpevpyIYWaAdN6ANoCEdAkA61qagElnV9lChoBkdAbz1qNZNfxGgHTcMDaAhHQJAOwumJm/Z1fZQoaAZHQHD4oAOrhitoB02FAmgIR0CQETQFs54odX2UKGgGR0ByMWuA7PpqaAdN4wNoCEdAkBULEk0JnnV9lChoBkdAb0PDn/1g6WgHTUwCaAhHQJAVYF8ohIR1fZQoaAZHQHIfThtLteFoB02QAWgIR0CQFdgBcRlIdX2UKGgGR0BxWs1baAWjaAdNRQJoCEdAkBYpZjhDPXV9lChoBkdAca7N0NjLCGgHTWoCaAhHQJAWdgx8D0V1fZQoaAZHQHCnSyUs4DNoB00LA2gIR0CQGG6QeV9ndX2UKGgGR0BwUnUiILw4aAdNewFoCEdAkBm7AHmig3V9lChoBkdAblUb4rSVnmgHTRcCaAhHQJAZ6lxffGd1fZQoaAZHQG5uFxXGOuJoB000AWgIR0CQG9azNUwSdX2UKGgGR0A/sr6LwWnCaAdL+GgIR0CQH5v1lGwzdWUu"
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 248,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:652fe51d1337d5567742c31148a7b54700e5b5fc62ba64f0c519217a7115ef9b
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fd057289f98597ea3e574270a5fe274891e97184af86633ad08ce25cdf604af0
3
+ size 43329
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (136 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 268.22354800258347, "std_reward": 22.857131985707536, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-08-29T04:46:38.579374"}