Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v3.zip +3 -0
- a2c-PandaReachDense-v3/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v3/data +97 -0
- a2c-PandaReachDense-v3/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v3/policy.pth +3 -0
- a2c-PandaReachDense-v3/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v3/system_info.txt +9 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v3
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v3
|
16 |
+
type: PandaReachDense-v3
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -0.26 +/- 0.11
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v3**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v3.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f6f7e8b3a7ed815bad82d84cd5097fffc6e7e946ca9a8df730e90a0649da3b2b
|
3 |
+
size 106915
|
a2c-PandaReachDense-v3/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.1.0
|
a2c-PandaReachDense-v3/data
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7e28d16a1ea0>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7e28d16aa6c0>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"num_timesteps": 1000000,
|
23 |
+
"_total_timesteps": 1000000,
|
24 |
+
"_num_timesteps_at_start": 0,
|
25 |
+
"seed": null,
|
26 |
+
"action_noise": null,
|
27 |
+
"start_time": 1692666089052506996,
|
28 |
+
"learning_rate": 0.0007,
|
29 |
+
"tensorboard_log": null,
|
30 |
+
"_last_obs": {
|
31 |
+
":type:": "<class 'collections.OrderedDict'>",
|
32 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAACkXKPUgf0r4iRyo/bVKwPtTR0D7LYGS9ZviPP0jsl7+oUkk/h29yPl5zQrtCQeY+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAqg0iPYv4x762EcQ/tHGQP1ujyD/yBqa/kpm0Pwytkr+thxo/5gSSP0BOpj/hCNI/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAKRco9SB/SviJHKj8o/+4+mhrSv6XCmD9tUrA+1NHQPstgZL0dABW+bj/TP3pYvb9m+I8/SOyXv6hSST+4YYE/mZ5tv7VnVT+Hb3I+XnNCu0JB5j7cAPI+aeiaOtDVvz6UaA5LBEsGhpRoEnSUUpR1Lg==",
|
33 |
+
"achieved_goal": "[[ 0.09876449 -0.4103949 0.6651479 ]\n [ 0.34437886 0.40785086 -0.05575637]\n [ 1.124768 -1.1868982 0.7864175 ]\n [ 0.23675357 -0.00296708 0.44971663]]",
|
34 |
+
"desired_goal": "[[ 0.03956381 -0.3905681 1.5317905 ]\n [ 1.12847 1.5674852 -1.297087 ]\n [ 1.4109366 -1.145906 0.60363275]\n [ 1.1407745 1.299263 1.640896 ]]",
|
35 |
+
"observation": "[[ 9.8764494e-02 -4.1039491e-01 6.6514790e-01 4.6679044e-01\n -1.6414368e+00 1.1934401e+00]\n [ 3.4437886e-01 4.0785086e-01 -5.5756371e-02 -1.4550824e-01\n 1.6503732e+00 -1.4792626e+00]\n [ 1.1247680e+00 -1.1868982e+00 7.8641748e-01 1.0107946e+00\n -9.2820126e-01 8.3361369e-01]\n [ 2.3675357e-01 -2.9670815e-03 4.4971663e-01 4.7266281e-01\n 1.1818531e-03 3.7467813e-01]]"
|
36 |
+
},
|
37 |
+
"_last_episode_starts": {
|
38 |
+
":type:": "<class 'numpy.ndarray'>",
|
39 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
40 |
+
},
|
41 |
+
"_last_original_obs": {
|
42 |
+
":type:": "<class 'collections.OrderedDict'>",
|
43 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAmToJvX9O5T0GHCs+wzU3PXJqw702RU88A8vKOuMrBr4gkB4+xZYEPi/C3T0CG609lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
44 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
45 |
+
"desired_goal": "[[-0.03350315 0.11196613 0.16709909]\n [ 0.04472901 -0.09541787 0.01265078]\n [ 0.00154719 -0.13102679 0.15484667]\n [ 0.12948139 0.10828053 0.08452417]]",
|
46 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
47 |
+
},
|
48 |
+
"_episode_num": 0,
|
49 |
+
"use_sde": false,
|
50 |
+
"sde_sample_freq": -1,
|
51 |
+
"_current_progress_remaining": 0.0,
|
52 |
+
"_stats_window_size": 100,
|
53 |
+
"ep_info_buffer": {
|
54 |
+
":type:": "<class 'collections.deque'>",
|
55 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv9SRbKRuCPKMAWyUSwOMAXSUR0CjiXore67NdX2UKGgGR7/WZNwiqyWzaAdLBGgIR0CjiTlk6LfldX2UKGgGR7+Tyz5XU6PsaAdLAWgIR0CjiT3Td+G5dX2UKGgGR7/Yn/1g6U7kaAdLBGgIR0CjiclQMx46dX2UKGgGR7/UTzND+irUaAdLA2gIR0CjiYfIS13MdX2UKGgGR7/XK64Ds+mnaAdLBGgIR0CjiQGuDBdldX2UKGgGR7/Dbpu/DcdpaAdLAmgIR0CjiZN8uzyCdX2UKGgGR7/Fq2SdOIqLaAdLA2gIR0CjiU6V2Rq5dX2UKGgGR7+yneizsyBTaAdLAmgIR0CjiQ2uPmxMdX2UKGgGR7/LwazeGfwraAdLA2gIR0Cjido/iYLLdX2UKGgGR7/DcL0Bfa6CaAdLAmgIR0CjiZzByjpLdX2UKGgGR7+4zrNW2gFpaAdLAmgIR0CjieLiuMdcdX2UKGgGR7/JC9h7VrhzaAdLA2gIR0CjiVwGfPHDdX2UKGgGR7/RGp++dsi0aAdLA2gIR0CjiRsrVe8gdX2UKGgGR7/BY/Vy3kPuaAdLAmgIR0CjiSYzJp35dX2UKGgGR7/PNeMQ2/BWaAdLA2gIR0CjifKwIMScdX2UKGgGR7/ak6Lfk3juaAdLBGgIR0CjibEqDsdDdX2UKGgGR7/IouPFNtZWaAdLA2gIR0CjiWwJ5VwQdX2UKGgGR7+pdD6WPcSHaAdLAWgIR0CjiSuCwr1/dX2UKGgGR7+1zxPO6d1/aAdLAmgIR0CjiTR3V09ydX2UKGgGR7/I1WsA/9pAaAdLA2gIR0CjicG9pRGddX2UKGgGR7/FLA57w8W9aAdLA2gIR0CjiXzjvNNbdX2UKGgGR7/YHTI/7iyZaAdLBGgIR0CjigiCjDbbdX2UKGgGR7+8NQTEit7saAdLAmgIR0CjiYW+wkgPdX2UKGgGR7/HAymALApKaAdLA2gIR0CjiUUM5OrRdX2UKGgGR7/VfmcOLBKuaAdLA2gIR0Cjic/SH/LldX2UKGgGR7/JsByS3b22aAdLA2gIR0CjihXrUsnRdX2UKGgGR7/Ojnmq5sj3aAdLA2gIR0CjiZYHxBmgdX2UKGgGR7/TQtjCpFTeaAdLA2gIR0Cjid/vOQhfdX2UKGgGR7/ZwEyLyc0+aAdLBGgIR0CjiVmgJ1JUdX2UKGgGR7/Uhm5Dqnm8aAdLA2gIR0CjiiYigTRIdX2UKGgGR7+/9kz41xbTaAdLAmgIR0CjiWIyTINmdX2UKGgGR7/Qxh2GIsRQaAdLA2gIR0Cjiez1bqyGdX2UKGgGR7/awQUYbbUPaAdLBGgIR0CjiafGlyimdX2UKGgGR7/NbL2YfGMoaAdLA2gIR0CjijYdp7C0dX2UKGgGR7/OILw4KhL5aAdLA2gIR0CjiXJKSPludX2UKGgGR7/JY5ksjFAFaAdLA2gIR0Cjif0gr6LwdX2UKGgGR7/GvdM0xdpqaAdLA2gIR0CjibgDA8B/dX2UKGgGR7/XWilBQemvaAdLBGgIR0Cjikhj4HopdX2UKGgGR7/KOy3Td+G5aAdLA2gIR0CjiYC22G7BdX2UKGgGR7/TlsP8Q7LdaAdLA2gIR0Cjig49xIatdX2UKGgGR7/RIKtxMnJDaAdLA2gIR0CjicknTiKjdX2UKGgGR7/TFLnLaEi/aAdLA2gIR0Cjilk8aGYbdX2UKGgGR7/FQ3PzFuNxaAdLAmgIR0Cjihe4kNWmdX2UKGgGR7/C1v2oNutPaAdLAmgIR0CjidKPXCj2dX2UKGgGR7/LLU1AJLM+aAdLA2gIR0CjiZG1IAfddX2UKGgGR7+934bjtG/faAdLAmgIR0CjimLRa5f/dX2UKGgGR7+6Wkadc0LuaAdLAmgIR0CjiZri2lVMdX2UKGgGR7/RHcUM5OrRaAdLA2gIR0CjiihS1maqdX2UKGgGR7+mD15B1LamaAdLAWgIR0CjiiyqMm4RdX2UKGgGR7/aEHt4RmK7aAdLBGgIR0Cjied7F85TdX2UKGgGR7/HWYF7laKUaAdLA2gIR0CjiarOzIFNdX2UKGgGR7/gN4A0bcXWaAdLBGgIR0CjindAPd2xdX2UKGgGR7/NS8an752yaAdLA2gIR0CjijnJLdvbdX2UKGgGR7/VSFGoaUA1aAdLBGgIR0Cjifvkili0dX2UKGgGR7/MymhufmLcaAdLA2gIR0CjibtHxz7udX2UKGgGR7/ZIl+mWMS9aAdLBGgIR0CjiovqC6H1dX2UKGgGR7+0GhVU+9rXaAdLAmgIR0CjigUNayKOdX2UKGgGR7+XRb8m8dxRaAdLAWgIR0CjipCHRCyAdX2UKGgGR7/STnq3VkMDaAdLBGgIR0Cjik8T8HfNdX2UKGgGR7/RnWattALRaAdLA2gIR0CjicjrRjSYdX2UKGgGR7/AEmplz2eyaAdLAmgIR0CjipwL/jsEdX2UKGgGR7/PG8274BV/aAdLA2gIR0CjihUtAcDKdX2UKGgGR7/SUhV2icoZaAdLA2gIR0Cjil7qyGBXdX2UKGgGR7/NPcBU70WeaAdLA2gIR0Cjidjfm9xqdX2UKGgGR7++ISDh99c9aAdLAmgIR0CjiqVWsA/+dX2UKGgGR7/Vl2/zreImaAdLA2gIR0CjiiKKxcFAdX2UKGgGR7/BWtEG7jDLaAdLAmgIR0CjieHBLwnZdX2UKGgGR7/A9pRGc4HYaAdLAmgIR0Cjiq5CfHxSdX2UKGgGR7/alGgBcRlIaAdLBGgIR0CjinOHN5dGdX2UKGgGR7+zwOOKfnOjaAdLAmgIR0Cjii53cHnmdX2UKGgGR7+4cBEKE385aAdLAmgIR0CjiroZ62ORdX2UKGgGR7/ONtqHoHLSaAdLA2gIR0CjifIvi97GdX2UKGgGR7+1CdBjWkJsaAdLAmgIR0CjijesxO+JdX2UKGgGR7/UpSrHU+cIaAdLA2gIR0CjioF9roGIdX2UKGgGR7/UERradtl7aAdLA2gIR0CjisfOUt7KdX2UKGgGR7/VV0cOskpraAdLA2gIR0Cjif/gBLf2dX2UKGgGR7/SvLowEhaDaAdLA2gIR0Cjikf3vhIfdX2UKGgGR7/RFWn0kGA1aAdLA2gIR0CjipHm7rcCdX2UKGgGR7+5wfhddE9daAdLAmgIR0CjigvEKmbcdX2UKGgGR7/GdtEXtShraAdLA2gIR0Cjit2om5UcdX2UKGgGR7/B7Q9ic5KfaAdLAmgIR0CjiqBZIQOGdX2UKGgGR7/GFeOXE61caAdLA2gIR0Cjils8PnSwdX2UKGgGR7/RIyTINmUXaAdLA2gIR0Cjih6AvtdBdX2UKGgGR7/M6BiCrcTKaAdLA2gIR0Cjiu1s1sLwdX2UKGgGR7+4mReTmnwYaAdLAmgIR0Cjiqvr4WUKdX2UKGgGR7+29AX2ugYhaAdLAmgIR0CjimbKq4pddX2UKGgGR7+g/JNj9XLeaAdLAWgIR0CjirB4Uvf1dX2UKGgGR7+hNh3JPqLTaAdLAWgIR0CjimuBMBZIdX2UKGgGR7/O7xNIsiB5aAdLA2gIR0Cjii7WVeKLdX2UKGgGR7/Qnq3VkMCtaAdLA2gIR0CjivtkvsZ6dX2UKGgGR7+zx6OYIBzWaAdLAmgIR0Cjirnwob4rdX2UKGgGR7+ep0fYBeXzaAdLAWgIR0CjiwBDw6QvdX2UKGgGR7/NVVghKUV0aAdLA2gIR0CjinlnIyTIdX2UKGgGR7/MAe7tiQT3aAdLA2gIR0Cjij8TakAQdX2UKGgGR7/R3Roh6jWTaAdLA2gIR0CjisnfVI7OdX2UKGgGR7/RK3NLUTcqaAdLA2gIR0CjiojO1OTJdX2UKGgGR7/YgTh5xBE8aAdLBGgIR0CjixSOaOPvdX2UKGgGR7/BIz3yqdYoaAdLAmgIR0CjitMNMGordX2UKGgGR7/XmEoOQQtjaAdLBGgIR0CjilENnXd1dWUu"
|
56 |
+
},
|
57 |
+
"ep_success_buffer": {
|
58 |
+
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
60 |
+
},
|
61 |
+
"_n_updates": 50000,
|
62 |
+
"n_steps": 5,
|
63 |
+
"gamma": 0.99,
|
64 |
+
"gae_lambda": 1.0,
|
65 |
+
"ent_coef": 0.0,
|
66 |
+
"vf_coef": 0.5,
|
67 |
+
"max_grad_norm": 0.5,
|
68 |
+
"normalize_advantage": false,
|
69 |
+
"observation_space": {
|
70 |
+
":type:": "<class 'gymnasium.spaces.dict.Dict'>",
|
71 |
+
":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==",
|
72 |
+
"spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])",
|
73 |
+
"_shape": null,
|
74 |
+
"dtype": null,
|
75 |
+
"_np_random": null
|
76 |
+
},
|
77 |
+
"action_space": {
|
78 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
79 |
+
":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==",
|
80 |
+
"dtype": "float32",
|
81 |
+
"bounded_below": "[ True True True]",
|
82 |
+
"bounded_above": "[ True True True]",
|
83 |
+
"_shape": [
|
84 |
+
3
|
85 |
+
],
|
86 |
+
"low": "[-1. -1. -1.]",
|
87 |
+
"high": "[1. 1. 1.]",
|
88 |
+
"low_repr": "-1.0",
|
89 |
+
"high_repr": "1.0",
|
90 |
+
"_np_random": null
|
91 |
+
},
|
92 |
+
"n_envs": 4,
|
93 |
+
"lr_schedule": {
|
94 |
+
":type:": "<class 'function'>",
|
95 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
96 |
+
}
|
97 |
+
}
|
a2c-PandaReachDense-v3/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b8b8830b929868c7e15dc71a2cd4b9e83aa59e8c3e17828b100411b82bbd2882
|
3 |
+
size 44734
|
a2c-PandaReachDense-v3/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:60edd33dc70a7936e66891fcdf81921e62de09e0af509896f9a2dcf415ab9fd6
|
3 |
+
size 46014
|
a2c-PandaReachDense-v3/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v3/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.1.0
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.29.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7e28d16a1ea0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e28d16aa6c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1692666089052506996, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAACkXKPUgf0r4iRyo/bVKwPtTR0D7LYGS9ZviPP0jsl7+oUkk/h29yPl5zQrtCQeY+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAqg0iPYv4x762EcQ/tHGQP1ujyD/yBqa/kpm0Pwytkr+thxo/5gSSP0BOpj/hCNI/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAKRco9SB/SviJHKj8o/+4+mhrSv6XCmD9tUrA+1NHQPstgZL0dABW+bj/TP3pYvb9m+I8/SOyXv6hSST+4YYE/mZ5tv7VnVT+Hb3I+XnNCu0JB5j7cAPI+aeiaOtDVvz6UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.09876449 -0.4103949 0.6651479 ]\n [ 0.34437886 0.40785086 -0.05575637]\n [ 1.124768 -1.1868982 0.7864175 ]\n [ 0.23675357 -0.00296708 0.44971663]]", "desired_goal": "[[ 0.03956381 -0.3905681 1.5317905 ]\n [ 1.12847 1.5674852 -1.297087 ]\n [ 1.4109366 -1.145906 0.60363275]\n [ 1.1407745 1.299263 1.640896 ]]", "observation": "[[ 9.8764494e-02 -4.1039491e-01 6.6514790e-01 4.6679044e-01\n -1.6414368e+00 1.1934401e+00]\n [ 3.4437886e-01 4.0785086e-01 -5.5756371e-02 -1.4550824e-01\n 1.6503732e+00 -1.4792626e+00]\n [ 1.1247680e+00 -1.1868982e+00 7.8641748e-01 1.0107946e+00\n -9.2820126e-01 8.3361369e-01]\n [ 2.3675357e-01 -2.9670815e-03 4.4971663e-01 4.7266281e-01\n 1.1818531e-03 3.7467813e-01]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAmToJvX9O5T0GHCs+wzU3PXJqw702RU88A8vKOuMrBr4gkB4+xZYEPi/C3T0CG609lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.03350315 0.11196613 0.16709909]\n [ 0.04472901 -0.09541787 0.01265078]\n [ 0.00154719 -0.13102679 0.15484667]\n [ 0.12948139 0.10828053 0.08452417]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv9SRbKRuCPKMAWyUSwOMAXSUR0CjiXore67NdX2UKGgGR7/WZNwiqyWzaAdLBGgIR0CjiTlk6LfldX2UKGgGR7+Tyz5XU6PsaAdLAWgIR0CjiT3Td+G5dX2UKGgGR7/Yn/1g6U7kaAdLBGgIR0CjiclQMx46dX2UKGgGR7/UTzND+irUaAdLA2gIR0CjiYfIS13MdX2UKGgGR7/XK64Ds+mnaAdLBGgIR0CjiQGuDBdldX2UKGgGR7/Dbpu/DcdpaAdLAmgIR0CjiZN8uzyCdX2UKGgGR7/Fq2SdOIqLaAdLA2gIR0CjiU6V2Rq5dX2UKGgGR7+yneizsyBTaAdLAmgIR0CjiQ2uPmxMdX2UKGgGR7/LwazeGfwraAdLA2gIR0Cjido/iYLLdX2UKGgGR7/DcL0Bfa6CaAdLAmgIR0CjiZzByjpLdX2UKGgGR7+4zrNW2gFpaAdLAmgIR0CjieLiuMdcdX2UKGgGR7/JC9h7VrhzaAdLA2gIR0CjiVwGfPHDdX2UKGgGR7/RGp++dsi0aAdLA2gIR0CjiRsrVe8gdX2UKGgGR7/BY/Vy3kPuaAdLAmgIR0CjiSYzJp35dX2UKGgGR7/PNeMQ2/BWaAdLA2gIR0CjifKwIMScdX2UKGgGR7/ak6Lfk3juaAdLBGgIR0CjibEqDsdDdX2UKGgGR7/IouPFNtZWaAdLA2gIR0CjiWwJ5VwQdX2UKGgGR7+pdD6WPcSHaAdLAWgIR0CjiSuCwr1/dX2UKGgGR7+1zxPO6d1/aAdLAmgIR0CjiTR3V09ydX2UKGgGR7/I1WsA/9pAaAdLA2gIR0CjicG9pRGddX2UKGgGR7/FLA57w8W9aAdLA2gIR0CjiXzjvNNbdX2UKGgGR7/YHTI/7iyZaAdLBGgIR0CjigiCjDbbdX2UKGgGR7+8NQTEit7saAdLAmgIR0CjiYW+wkgPdX2UKGgGR7/HAymALApKaAdLA2gIR0CjiUUM5OrRdX2UKGgGR7/VfmcOLBKuaAdLA2gIR0Cjic/SH/LldX2UKGgGR7/JsByS3b22aAdLA2gIR0CjihXrUsnRdX2UKGgGR7/Ojnmq5sj3aAdLA2gIR0CjiZYHxBmgdX2UKGgGR7/TQtjCpFTeaAdLA2gIR0Cjid/vOQhfdX2UKGgGR7/ZwEyLyc0+aAdLBGgIR0CjiVmgJ1JUdX2UKGgGR7/Uhm5Dqnm8aAdLA2gIR0CjiiYigTRIdX2UKGgGR7+/9kz41xbTaAdLAmgIR0CjiWIyTINmdX2UKGgGR7/Qxh2GIsRQaAdLA2gIR0Cjiez1bqyGdX2UKGgGR7/awQUYbbUPaAdLBGgIR0CjiafGlyimdX2UKGgGR7/NbL2YfGMoaAdLA2gIR0CjijYdp7C0dX2UKGgGR7/OILw4KhL5aAdLA2gIR0CjiXJKSPludX2UKGgGR7/JY5ksjFAFaAdLA2gIR0Cjif0gr6LwdX2UKGgGR7/GvdM0xdpqaAdLA2gIR0CjibgDA8B/dX2UKGgGR7/XWilBQemvaAdLBGgIR0Cjikhj4HopdX2UKGgGR7/KOy3Td+G5aAdLA2gIR0CjiYC22G7BdX2UKGgGR7/TlsP8Q7LdaAdLA2gIR0Cjig49xIatdX2UKGgGR7/RIKtxMnJDaAdLA2gIR0CjicknTiKjdX2UKGgGR7/TFLnLaEi/aAdLA2gIR0Cjilk8aGYbdX2UKGgGR7/FQ3PzFuNxaAdLAmgIR0Cjihe4kNWmdX2UKGgGR7/C1v2oNutPaAdLAmgIR0CjidKPXCj2dX2UKGgGR7/LLU1AJLM+aAdLA2gIR0CjiZG1IAfddX2UKGgGR7+934bjtG/faAdLAmgIR0CjimLRa5f/dX2UKGgGR7+6Wkadc0LuaAdLAmgIR0CjiZri2lVMdX2UKGgGR7/RHcUM5OrRaAdLA2gIR0CjiihS1maqdX2UKGgGR7+mD15B1LamaAdLAWgIR0CjiiyqMm4RdX2UKGgGR7/aEHt4RmK7aAdLBGgIR0Cjied7F85TdX2UKGgGR7/HWYF7laKUaAdLA2gIR0CjiarOzIFNdX2UKGgGR7/gN4A0bcXWaAdLBGgIR0CjindAPd2xdX2UKGgGR7/NS8an752yaAdLA2gIR0CjijnJLdvbdX2UKGgGR7/VSFGoaUA1aAdLBGgIR0Cjifvkili0dX2UKGgGR7/MymhufmLcaAdLA2gIR0CjibtHxz7udX2UKGgGR7/ZIl+mWMS9aAdLBGgIR0CjiovqC6H1dX2UKGgGR7+0GhVU+9rXaAdLAmgIR0CjigUNayKOdX2UKGgGR7+XRb8m8dxRaAdLAWgIR0CjipCHRCyAdX2UKGgGR7/STnq3VkMDaAdLBGgIR0Cjik8T8HfNdX2UKGgGR7/RnWattALRaAdLA2gIR0CjicjrRjSYdX2UKGgGR7/AEmplz2eyaAdLAmgIR0CjipwL/jsEdX2UKGgGR7/PG8274BV/aAdLA2gIR0CjihUtAcDKdX2UKGgGR7/SUhV2icoZaAdLA2gIR0Cjil7qyGBXdX2UKGgGR7/NPcBU70WeaAdLA2gIR0Cjidjfm9xqdX2UKGgGR7++ISDh99c9aAdLAmgIR0CjiqVWsA/+dX2UKGgGR7/Vl2/zreImaAdLA2gIR0CjiiKKxcFAdX2UKGgGR7/BWtEG7jDLaAdLAmgIR0CjieHBLwnZdX2UKGgGR7/A9pRGc4HYaAdLAmgIR0Cjiq5CfHxSdX2UKGgGR7/alGgBcRlIaAdLBGgIR0CjinOHN5dGdX2UKGgGR7+zwOOKfnOjaAdLAmgIR0Cjii53cHnmdX2UKGgGR7+4cBEKE385aAdLAmgIR0CjiroZ62ORdX2UKGgGR7/ONtqHoHLSaAdLA2gIR0CjifIvi97GdX2UKGgGR7+1CdBjWkJsaAdLAmgIR0CjijesxO+JdX2UKGgGR7/UpSrHU+cIaAdLA2gIR0CjioF9roGIdX2UKGgGR7/UERradtl7aAdLA2gIR0CjisfOUt7KdX2UKGgGR7/VV0cOskpraAdLA2gIR0Cjif/gBLf2dX2UKGgGR7/SvLowEhaDaAdLA2gIR0Cjikf3vhIfdX2UKGgGR7/RFWn0kGA1aAdLA2gIR0CjipHm7rcCdX2UKGgGR7+5wfhddE9daAdLAmgIR0CjigvEKmbcdX2UKGgGR7/GdtEXtShraAdLA2gIR0Cjit2om5UcdX2UKGgGR7/B7Q9ic5KfaAdLAmgIR0CjiqBZIQOGdX2UKGgGR7/GFeOXE61caAdLA2gIR0Cjils8PnSwdX2UKGgGR7/RIyTINmUXaAdLA2gIR0Cjih6AvtdBdX2UKGgGR7/M6BiCrcTKaAdLA2gIR0Cjiu1s1sLwdX2UKGgGR7+4mReTmnwYaAdLAmgIR0Cjiqvr4WUKdX2UKGgGR7+29AX2ugYhaAdLAmgIR0CjimbKq4pddX2UKGgGR7+g/JNj9XLeaAdLAWgIR0CjirB4Uvf1dX2UKGgGR7+hNh3JPqLTaAdLAWgIR0CjimuBMBZIdX2UKGgGR7/O7xNIsiB5aAdLA2gIR0Cjii7WVeKLdX2UKGgGR7/Qnq3VkMCtaAdLA2gIR0CjivtkvsZ6dX2UKGgGR7+zx6OYIBzWaAdLAmgIR0Cjirnwob4rdX2UKGgGR7+ep0fYBeXzaAdLAWgIR0CjiwBDw6QvdX2UKGgGR7/NVVghKUV0aAdLA2gIR0CjinlnIyTIdX2UKGgGR7/MAe7tiQT3aAdLA2gIR0Cjij8TakAQdX2UKGgGR7/R3Roh6jWTaAdLA2gIR0CjisnfVI7OdX2UKGgGR7/RK3NLUTcqaAdLA2gIR0CjiojO1OTJdX2UKGgGR7/YgTh5xBE8aAdLBGgIR0CjixSOaOPvdX2UKGgGR7/BIz3yqdYoaAdLAmgIR0CjitMNMGordX2UKGgGR7/XmEoOQQtjaAdLBGgIR0CjilENnXd1dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
|
replay.mp4
ADDED
Binary file (684 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -0.2620339460670948, "std_reward": 0.11395856230570463, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-08-22T01:44:30.378716"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5d3060a73c7b5f5a39fe398804e59927ce5e76b5d11b6783b5d4c02530ad83f1
|
3 |
+
size 2636
|