Upload PPO LunarLander-v2-updates trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2-updates.zip +3 -0
- ppo-LunarLander-v2-updates/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2-updates/data +94 -0
- ppo-LunarLander-v2-updates/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2-updates/policy.pth +3 -0
- ppo-LunarLander-v2-updates/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2-updates/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 296.52 +/- 12.94
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2f19453040>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2f194530d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2f19453160>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2f194531f0>", "_build": "<function ActorCriticPolicy._build at 0x7f2f19453280>", "forward": "<function ActorCriticPolicy.forward at 0x7f2f19453310>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2f194533a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f2f19453430>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2f194534c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2f19453550>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2f194535e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f2f19448c60>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 32, "num_timesteps": 10027008, "_total_timesteps": 10000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671360591429106714, "learning_rate": 0.001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAANperT0xjUk+E3KavqSkIr8cz4e9tsrQvQAAAAAAAAAAmuc9vAnAoD9guq694pI4vwUz/7xJ6LC9AAAAAAAAAABm6oa7w5FAuj9jBjTbuTyuyXe4OjlGtLMAAIA/AACAPwBjnTzhQKS6ritZu+KpkTgI60C6Df7mOQAAgD8AAIA/5vsBvXW5jT925gO+VuFkv++dhrxC0pa9AAAAAAAAAABmkc487P7wu92f9b3ywLW9W785PRJqJz8AAIA/AACAP328iD5ocIE/49dYvWZZDL+xtBo/WOY5vgAAAAAAAAAAZgZ9PClkVbpmfn8678woNSuxADvA0pW5AACAPwAAgD9mfri7wx1put0wCDqZDjK2rSEjO9r1G7kAAIA/AACAP7OCvj20R5A/To6rPuEzSr8U7Io+ApF7PgAAAAAAAAAAALT+vOFUgbrtjRa4M5p2s2j8jTppvC03AACAPwAAgD8AX4k8wwEluuvrnDoaBc401BbAuGV/ubkAAIA/AACAPzOL0Duu2bW6q76bOqsbjjVvXfu4E9+xuQAAgD8AAIA/ZqZCOq4tibrRHJW8HDfPMqdbYDoYMPOyAACAPwAAgD+aqTQ7w4FZuo9ci7vqg1k4fH9HuVsuADkAAIA/AACAP7PTJL24lO27ZlPQPS8cTDwKEzi9YK4uPQAAgD8AAIA/mpqvvPtPuD9Av2++GY0XPQmwuzy+wMQ8AAAAAAAAAACanry8ewqlunkkQD0OaW44ZJouOpo1XjcAAIA/AACAP2YOETzhUI66xSznOEIYujPSXpm6iQEGuAAAgD8AAIA/AMSuvVaDGT1+EpI+ssjeviDGGD5SuLU9AAAAAAAAAAAm1pI9DG+uP+CF4T49w6e+w+OmPc9kwj4AAAAAAAAAAJo1XLyFZtu7EcilPXWLGb5kRWU7Y0+uvgAAgD8AAIA/zfR+O6QzEbvupVm8Ir2KPEvyGDxLtnG9AACAPwAAgD+tK1O+JrcaPw38Tj7EvS6/Y7qOvgomTT4AAAAAAAAAALM1Rz2WRb8/HVE4PsVDCL4aOyc+q7BzPgAAAAAAAAAAZnRyPFJwnbl4Ez64PN2fMmC/Ublm/mA3AACAPwAAgD9mtm87FLnlOyUmSr4tGSa+VZqVvfp/dD8AAIA/AAAAAM3kwzuu0Z+65Woptv4yH7GODIW5LpVCNQAAgD8AAIA/M/vRvM9qwD+aUBG+6RGtOvcpxjuFOlk7AAAAAAAAAACafdK8dF+0P0vXtr7agrq9tkgyu9OqPb0AAAAAAAAAAJo5k7uD12S80yYtvm5Uhr0VuDQ9Xz8RPgAAgD8AAIA/M9s0u1Ktq7vSqx68K2WJPLDe+Tyo5G29AACAPwAAgD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0027007999999999477, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI9katMH3mckCUhpRSlIwBbJRLqowBdJRHQLdJX2HLzPN1fZQoaAZoCWgPQwjBxYoaTNNyQJSGlFKUaBVLsmgWR0C3SWIYBNmEdX2UKGgGaAloD0MITmGlgkoSckCUhpRSlGgVS61oFkdAt0l24pc5bXV9lChoBmgJaA9DCN/+XDTkfHFAlIaUUpRoFUu+aBZHQLdJiWRigCh1fZQoaAZoCWgPQwh8YMd/wQZyQJSGlFKUaBVLuWgWR0C3SaR/3FkydX2UKGgGaAloD0MIH4XrUTiZcUCUhpRSlGgVS6xoFkdAt0mqYRdyDXV9lChoBmgJaA9DCP88DRjknnRAlIaUUpRoFUvOaBZHQLdJ3LtNSIh1fZQoaAZoCWgPQwiLijidpMxwQJSGlFKUaBVLp2gWR0C3SedmL9/CdX2UKGgGaAloD0MIDfs9sY5AckCUhpRSlGgVS7FoFkdAt0ntCv5gxHV9lChoBmgJaA9DCONV1jaFJnFAlIaUUpRoFUuGaBZHQLdJ+8CgbqB1fZQoaAZoCWgPQwjsEtVbA5VxQJSGlFKUaBVLrGgWR0C3Sgn+qBEsdX2UKGgGaAloD0MI0Joff2l2c0CUhpRSlGgVS7poFkdAt0oKBmPHUHV9lChoBmgJaA9DCNUiopj8WnRAlIaUUpRoFUuwaBZHQLdKFQHAymB1fZQoaAZoCWgPQwj9Mhgj0lR0QJSGlFKUaBVLqWgWR0C3SimQOnVHdX2UKGgGaAloD0MIdOrKZ3n9c0CUhpRSlGgVS6xoFkdAt0oul67dznV9lChoBmgJaA9DCDDa44U0CnJAlIaUUpRoFU2vAmgWR0C3SjHgpBomdX2UKGgGaAloD0MISkbOwt6EcUCUhpRSlGgVS61oFkdAt0oyADq4Y3V9lChoBmgJaA9DCEHw+PbutHFAlIaUUpRoFUuQaBZHQLdKPAe7tiR1fZQoaAZoCWgPQwjNk2sKZOtxQJSGlFKUaBVLjmgWR0C3SjtyHVPOdX2UKGgGaAloD0MIzok9tM/pcUCUhpRSlGgVS7hoFkdAt0pVDBuXNXV9lChoBmgJaA9DCG0ANiACwnFAlIaUUpRoFUu1aBZHQLdKcAdn0051fZQoaAZoCWgPQwgC8bp+gd9zQJSGlFKUaBVLymgWR0C3SohV+7UYdX2UKGgGaAloD0MIjGg7pi5Oc0CUhpRSlGgVS6VoFkdAt0qUURFqjHV9lChoBmgJaA9DCHAi+rX1NW9AlIaUUpRoFUu2aBZHQLdKmaM72ct1fZQoaAZoCWgPQwg7xD9sqRNyQJSGlFKUaBVLkmgWR0C3SqCj59E1dX2UKGgGaAloD0MIstR6v9GCcUCUhpRSlGgVS4doFkdAt0rHrrxAjnV9lChoBmgJaA9DCGtFm+NcUHNAlIaUUpRoFUu4aBZHQLdK0b4agmJ1fZQoaAZoCWgPQwitwJDV7U5yQJSGlFKUaBVL3WgWR0C3SuKLGaQWdX2UKGgGaAloD0MIrwlpjQGxcUCUhpRSlGgVS6FoFkdAt0roYEW69XV9lChoBmgJaA9DCEt319mQZnNAlIaUUpRoFUviaBZHQLdK6Vqesgd1fZQoaAZoCWgPQwiXGwx1mGVxQJSGlFKUaBVLoGgWR0C3Su5v5xiodX2UKGgGaAloD0MIjUY+r/gBc0CUhpRSlGgVS49oFkdAt0rusxO+I3V9lChoBmgJaA9DCA73kVtTTXJAlIaUUpRoFUuzaBZHQLdK8waR6nl1fZQoaAZoCWgPQwg9SE+RwztvQJSGlFKUaBVLj2gWR0C3SwfKEFnqdX2UKGgGaAloD0MI8L4qF6rcc0CUhpRSlGgVS7BoFkdAt0sVnYg7o3V9lChoBmgJaA9DCL4SSIkdh3NAlIaUUpRoFUu1aBZHQLdLaagmJFd1fZQoaAZoCWgPQwhyiLg51a5yQJSGlFKUaBVLpWgWR0C3S6CT+vQodX2UKGgGaAloD0MI5s+3BYvqc0CUhpRSlGgVS7ZoFkdAt0ugCaJAMXV9lChoBmgJaA9DCFLuPscH23JAlIaUUpRoFUusaBZHQLdLsvnKW9l1fZQoaAZoCWgPQwgoDwu15hhzQJSGlFKUaBVLvWgWR0C3S7z5wfhddX2UKGgGaAloD0MIGy0Heig8cUCUhpRSlGgVS6NoFkdAt0u83IdU83V9lChoBmgJaA9DCOBpMuNtUm9AlIaUUpRoFUupaBZHQLdL3kbPyCp1fZQoaAZoCWgPQwhorz4euhxxQJSGlFKUaBVLrGgWR0C3S+baRISUdX2UKGgGaAloD0MIie/ErBd3QkCUhpRSlGgVS19oFkdAt0v3xBmf5HV9lChoBmgJaA9DCMLDtG9uK3JAlIaUUpRoFUu4aBZHQLdL+q0dBB11fZQoaAZoCWgPQwjT+lsCsPBzQJSGlFKUaBVLu2gWR0C3TAJOSGJvdX2UKGgGaAloD0MIw0fElMh+ckCUhpRSlGgVS7xoFkdAt0wB8fFJhHV9lChoBmgJaA9DCNNp3Qa1a3FAlIaUUpRoFUucaBZHQLdMECih37l1fZQoaAZoCWgPQwhZF7fRQJFyQJSGlFKUaBVLqWgWR0C3TBakAPupdX2UKGgGaAloD0MIkncOZegtcECUhpRSlGgVS5doFkdAt0wcR8MNMHV9lChoBmgJaA9DCC9tOCwNQnFAlIaUUpRoFUucaBZHQLdMHE7nxKB1fZQoaAZoCWgPQwhHxmrzvypxQJSGlFKUaBVL4WgWR0C3TEDjR2KVdX2UKGgGaAloD0MIwLSoT7IVcUCUhpRSlGgVS49oFkdAt0xE/MW43HV9lChoBmgJaA9DCDWbx2EwenJAlIaUUpRoFUueaBZHQLdMWDiwSrZ1fZQoaAZoCWgPQwiBJOzbCWt0QJSGlFKUaBVL1GgWR0C3TGFQ/HHWdX2UKGgGaAloD0MIhj3t8FeKcECUhpRSlGgVS6doFkdAt0xkcLjPwHV9lChoBmgJaA9DCFa5UPkX4HFAlIaUUpRoFUufaBZHQLdMdlZ5iVl1fZQoaAZoCWgPQwgz/KcbqBpzQJSGlFKUaBVLxGgWR0C3TIA+Y+jedX2UKGgGaAloD0MIHJlH/mAjcUCUhpRSlGgVS6doFkdAt0yKMXJo03V9lChoBmgJaA9DCHkfR3Nk9XJAlIaUUpRoFUusaBZHQLdMkHIIWxh1fZQoaAZoCWgPQwg3pbxWQlNyQJSGlFKUaBVLrmgWR0C3TJYKx9ofdX2UKGgGaAloD0MIv7UTJWHJckCUhpRSlGgVS7JoFkdAt0ypU5uIh3V9lChoBmgJaA9DCL4Ts17MiHJAlIaUUpRoFUu1aBZHQLdM1PhAGB51fZQoaAZoCWgPQwhVMCqpEwZxQJSGlFKUaBVLpWgWR0C3TQO76Hj7dX2UKGgGaAloD0MIw2SqYBThcUCUhpRSlGgVS6doFkdAt01AB5ooNXV9lChoBmgJaA9DCNRfr7DgzHBAlIaUUpRoFUujaBZHQLdNSC8e0Xx1fZQoaAZoCWgPQwhjsyPV9wpzQJSGlFKUaBVNVAFoFkdAt01Huqm0mnV9lChoBmgJaA9DCCHJrN7hPXBAlIaUUpRoFUuvaBZHQLdNccf/3nJ1fZQoaAZoCWgPQwgZ6NoXUAVwQJSGlFKUaBVLnWgWR0C3TYmnwXqJdX2UKGgGaAloD0MILqnabsJPcUCUhpRSlGgVS7poFkdAt02PesPrfXV9lChoBmgJaA9DCC81Qj/TdHFAlIaUUpRoFUuWaBZHQLdNlJ4B3id1fZQoaAZoCWgPQwgeozzzckNxQJSGlFKUaBVLsGgWR0C3TaBQ79ycdX2UKGgGaAloD0MIuk4jLdWYcUCUhpRSlGgVS6BoFkdAt02oqWkadnV9lChoBmgJaA9DCDpdFhNb3nBAlIaUUpRoFUuMaBZHQLdNvd8zAN51fZQoaAZoCWgPQwjW5Cmr6XJyQJSGlFKUaBVLuGgWR0C3TcznJT2ndX2UKGgGaAloD0MIuw9AalNFdECUhpRSlGgVS69oFkdAt03MjZ+QVHV9lChoBmgJaA9DCFPPglAeNHJAlIaUUpRoFUuVaBZHQLdN4oZhrnF1fZQoaAZoCWgPQwi30JUI1DpzQJSGlFKUaBVLwWgWR0C3TeKgM+eOdX2UKGgGaAloD0MIAKjixq23ckCUhpRSlGgVS8FoFkdAt03s0ygwoXV9lChoBmgJaA9DCFMkXwmkdHNAlIaUUpRoFUvPaBZHQLdN7P9DQZ51fZQoaAZoCWgPQwhhpBe1u/5wQJSGlFKUaBVLvmgWR0C3Tf/E0iyIdX2UKGgGaAloD0MIRDF5A8wUdECUhpRSlGgVS7NoFkdAt04PMTviLnV9lChoBmgJaA9DCB8Svve3JHNAlIaUUpRoFUu5aBZHQLdOGRsMy8B1fZQoaAZoCWgPQwhRZ+4h4R5xQJSGlFKUaBVLqGgWR0C3Ti81XNkfdX2UKGgGaAloD0MItVNzuYG/cECUhpRSlGgVS7BoFkdAt0444jrzG3V9lChoBmgJaA9DCPInKhuWcnFAlIaUUpRoFUuwaBZHQLdOTE5Qxet1fZQoaAZoCWgPQwjFH0Wd+WRxQJSGlFKUaBVLtWgWR0C3Tl75IpYtdX2UKGgGaAloD0MIoblOI23Lc0CUhpRSlGgVS8doFkdAt05exFAmiXV9lChoBmgJaA9DCL1tpkL8BnJAlIaUUpRoFUuraBZHQLdOYGgSOBF1fZQoaAZoCWgPQwh5HtydNXFyQJSGlFKUaBVLwmgWR0C3ToVCswL3dX2UKGgGaAloD0MI5iDoaFWzc0CUhpRSlGgVS7doFkdAt06sfV7QcHV9lChoBmgJaA9DCAdgAyIE0HFAlIaUUpRoFUu2aBZHQLdO20f5k9V1fZQoaAZoCWgPQwj9+iE2GLpyQJSGlFKUaBVLw2gWR0C3T0m16Vt5dX2UKGgGaAloD0MIEaeTbHUZc0CUhpRSlGgVS8ZoFkdAt09SJUHY6HV9lChoBmgJaA9DCLQB2ICIH3RAlIaUUpRoFUvKaBZHQLdPVgccU/R1fZQoaAZoCWgPQwijI7n8x+VxQJSGlFKUaBVLrmgWR0C3T2BeokzHdX2UKGgGaAloD0MIJc0f09pvZ0CUhpRSlGgVTegDaBZHQLdPbC6Ymb91fZQoaAZoCWgPQwjOjekJC0lxQJSGlFKUaBVLrWgWR0C3T3Kynk1edX2UKGgGaAloD0MIA7Fs5pBwcECUhpRSlGgVS7loFkdAt0957eEZi3V9lChoBmgJaA9DCIwwRbn0bXFAlIaUUpRoFUulaBZHQLdPfruYx+N1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 918, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.95, "ent_coef": 0.01, "vf_coef": 1, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 3, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2-updates.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:733293adce5a3d0a235591cc8d6b24f156d9503c455a8da1b14860d32c83b378
|
3 |
+
size 147790
|
ppo-LunarLander-v2-updates/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
ppo-LunarLander-v2-updates/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f2f19453040>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2f194530d0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2f19453160>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2f194531f0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f2f19453280>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f2f19453310>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2f194533a0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f2f19453430>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2f194534c0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2f19453550>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2f194535e0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f2f19448c60>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 32,
|
45 |
+
"num_timesteps": 10027008,
|
46 |
+
"_total_timesteps": 10000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1671360591429106714,
|
51 |
+
"learning_rate": 0.001,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAANperT0xjUk+E3KavqSkIr8cz4e9tsrQvQAAAAAAAAAAmuc9vAnAoD9guq694pI4vwUz/7xJ6LC9AAAAAAAAAABm6oa7w5FAuj9jBjTbuTyuyXe4OjlGtLMAAIA/AACAPwBjnTzhQKS6ritZu+KpkTgI60C6Df7mOQAAgD8AAIA/5vsBvXW5jT925gO+VuFkv++dhrxC0pa9AAAAAAAAAABmkc487P7wu92f9b3ywLW9W785PRJqJz8AAIA/AACAP328iD5ocIE/49dYvWZZDL+xtBo/WOY5vgAAAAAAAAAAZgZ9PClkVbpmfn8678woNSuxADvA0pW5AACAPwAAgD9mfri7wx1put0wCDqZDjK2rSEjO9r1G7kAAIA/AACAP7OCvj20R5A/To6rPuEzSr8U7Io+ApF7PgAAAAAAAAAAALT+vOFUgbrtjRa4M5p2s2j8jTppvC03AACAPwAAgD8AX4k8wwEluuvrnDoaBc401BbAuGV/ubkAAIA/AACAPzOL0Duu2bW6q76bOqsbjjVvXfu4E9+xuQAAgD8AAIA/ZqZCOq4tibrRHJW8HDfPMqdbYDoYMPOyAACAPwAAgD+aqTQ7w4FZuo9ci7vqg1k4fH9HuVsuADkAAIA/AACAP7PTJL24lO27ZlPQPS8cTDwKEzi9YK4uPQAAgD8AAIA/mpqvvPtPuD9Av2++GY0XPQmwuzy+wMQ8AAAAAAAAAACanry8ewqlunkkQD0OaW44ZJouOpo1XjcAAIA/AACAP2YOETzhUI66xSznOEIYujPSXpm6iQEGuAAAgD8AAIA/AMSuvVaDGT1+EpI+ssjeviDGGD5SuLU9AAAAAAAAAAAm1pI9DG+uP+CF4T49w6e+w+OmPc9kwj4AAAAAAAAAAJo1XLyFZtu7EcilPXWLGb5kRWU7Y0+uvgAAgD8AAIA/zfR+O6QzEbvupVm8Ir2KPEvyGDxLtnG9AACAPwAAgD+tK1O+JrcaPw38Tj7EvS6/Y7qOvgomTT4AAAAAAAAAALM1Rz2WRb8/HVE4PsVDCL4aOyc+q7BzPgAAAAAAAAAAZnRyPFJwnbl4Ez64PN2fMmC/Ublm/mA3AACAPwAAgD9mtm87FLnlOyUmSr4tGSa+VZqVvfp/dD8AAIA/AAAAAM3kwzuu0Z+65Woptv4yH7GODIW5LpVCNQAAgD8AAIA/M/vRvM9qwD+aUBG+6RGtOvcpxjuFOlk7AAAAAAAAAACafdK8dF+0P0vXtr7agrq9tkgyu9OqPb0AAAAAAAAAAJo5k7uD12S80yYtvm5Uhr0VuDQ9Xz8RPgAAgD8AAIA/M9s0u1Ktq7vSqx68K2WJPLDe+Tyo5G29AACAPwAAgD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.0027007999999999477,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVIBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI9katMH3mckCUhpRSlIwBbJRLqowBdJRHQLdJX2HLzPN1fZQoaAZoCWgPQwjBxYoaTNNyQJSGlFKUaBVLsmgWR0C3SWIYBNmEdX2UKGgGaAloD0MITmGlgkoSckCUhpRSlGgVS61oFkdAt0l24pc5bXV9lChoBmgJaA9DCN/+XDTkfHFAlIaUUpRoFUu+aBZHQLdJiWRigCh1fZQoaAZoCWgPQwh8YMd/wQZyQJSGlFKUaBVLuWgWR0C3SaR/3FkydX2UKGgGaAloD0MIH4XrUTiZcUCUhpRSlGgVS6xoFkdAt0mqYRdyDXV9lChoBmgJaA9DCP88DRjknnRAlIaUUpRoFUvOaBZHQLdJ3LtNSIh1fZQoaAZoCWgPQwiLijidpMxwQJSGlFKUaBVLp2gWR0C3SedmL9/CdX2UKGgGaAloD0MIDfs9sY5AckCUhpRSlGgVS7FoFkdAt0ntCv5gxHV9lChoBmgJaA9DCONV1jaFJnFAlIaUUpRoFUuGaBZHQLdJ+8CgbqB1fZQoaAZoCWgPQwjsEtVbA5VxQJSGlFKUaBVLrGgWR0C3Sgn+qBEsdX2UKGgGaAloD0MI0Joff2l2c0CUhpRSlGgVS7poFkdAt0oKBmPHUHV9lChoBmgJaA9DCNUiopj8WnRAlIaUUpRoFUuwaBZHQLdKFQHAymB1fZQoaAZoCWgPQwj9Mhgj0lR0QJSGlFKUaBVLqWgWR0C3SimQOnVHdX2UKGgGaAloD0MIdOrKZ3n9c0CUhpRSlGgVS6xoFkdAt0oul67dznV9lChoBmgJaA9DCDDa44U0CnJAlIaUUpRoFU2vAmgWR0C3SjHgpBomdX2UKGgGaAloD0MISkbOwt6EcUCUhpRSlGgVS61oFkdAt0oyADq4Y3V9lChoBmgJaA9DCEHw+PbutHFAlIaUUpRoFUuQaBZHQLdKPAe7tiR1fZQoaAZoCWgPQwjNk2sKZOtxQJSGlFKUaBVLjmgWR0C3SjtyHVPOdX2UKGgGaAloD0MIzok9tM/pcUCUhpRSlGgVS7hoFkdAt0pVDBuXNXV9lChoBmgJaA9DCG0ANiACwnFAlIaUUpRoFUu1aBZHQLdKcAdn0051fZQoaAZoCWgPQwgC8bp+gd9zQJSGlFKUaBVLymgWR0C3SohV+7UYdX2UKGgGaAloD0MIjGg7pi5Oc0CUhpRSlGgVS6VoFkdAt0qUURFqjHV9lChoBmgJaA9DCHAi+rX1NW9AlIaUUpRoFUu2aBZHQLdKmaM72ct1fZQoaAZoCWgPQwg7xD9sqRNyQJSGlFKUaBVLkmgWR0C3SqCj59E1dX2UKGgGaAloD0MIstR6v9GCcUCUhpRSlGgVS4doFkdAt0rHrrxAjnV9lChoBmgJaA9DCGtFm+NcUHNAlIaUUpRoFUu4aBZHQLdK0b4agmJ1fZQoaAZoCWgPQwitwJDV7U5yQJSGlFKUaBVL3WgWR0C3SuKLGaQWdX2UKGgGaAloD0MIrwlpjQGxcUCUhpRSlGgVS6FoFkdAt0roYEW69XV9lChoBmgJaA9DCEt319mQZnNAlIaUUpRoFUviaBZHQLdK6Vqesgd1fZQoaAZoCWgPQwiXGwx1mGVxQJSGlFKUaBVLoGgWR0C3Su5v5xiodX2UKGgGaAloD0MIjUY+r/gBc0CUhpRSlGgVS49oFkdAt0rusxO+I3V9lChoBmgJaA9DCA73kVtTTXJAlIaUUpRoFUuzaBZHQLdK8waR6nl1fZQoaAZoCWgPQwg9SE+RwztvQJSGlFKUaBVLj2gWR0C3SwfKEFnqdX2UKGgGaAloD0MI8L4qF6rcc0CUhpRSlGgVS7BoFkdAt0sVnYg7o3V9lChoBmgJaA9DCL4SSIkdh3NAlIaUUpRoFUu1aBZHQLdLaagmJFd1fZQoaAZoCWgPQwhyiLg51a5yQJSGlFKUaBVLpWgWR0C3S6CT+vQodX2UKGgGaAloD0MI5s+3BYvqc0CUhpRSlGgVS7ZoFkdAt0ugCaJAMXV9lChoBmgJaA9DCFLuPscH23JAlIaUUpRoFUusaBZHQLdLsvnKW9l1fZQoaAZoCWgPQwgoDwu15hhzQJSGlFKUaBVLvWgWR0C3S7z5wfhddX2UKGgGaAloD0MIGy0Heig8cUCUhpRSlGgVS6NoFkdAt0u83IdU83V9lChoBmgJaA9DCOBpMuNtUm9AlIaUUpRoFUupaBZHQLdL3kbPyCp1fZQoaAZoCWgPQwhorz4euhxxQJSGlFKUaBVLrGgWR0C3S+baRISUdX2UKGgGaAloD0MIie/ErBd3QkCUhpRSlGgVS19oFkdAt0v3xBmf5HV9lChoBmgJaA9DCMLDtG9uK3JAlIaUUpRoFUu4aBZHQLdL+q0dBB11fZQoaAZoCWgPQwjT+lsCsPBzQJSGlFKUaBVLu2gWR0C3TAJOSGJvdX2UKGgGaAloD0MIw0fElMh+ckCUhpRSlGgVS7xoFkdAt0wB8fFJhHV9lChoBmgJaA9DCNNp3Qa1a3FAlIaUUpRoFUucaBZHQLdMECih37l1fZQoaAZoCWgPQwhZF7fRQJFyQJSGlFKUaBVLqWgWR0C3TBakAPupdX2UKGgGaAloD0MIkncOZegtcECUhpRSlGgVS5doFkdAt0wcR8MNMHV9lChoBmgJaA9DCC9tOCwNQnFAlIaUUpRoFUucaBZHQLdMHE7nxKB1fZQoaAZoCWgPQwhHxmrzvypxQJSGlFKUaBVL4WgWR0C3TEDjR2KVdX2UKGgGaAloD0MIwLSoT7IVcUCUhpRSlGgVS49oFkdAt0xE/MW43HV9lChoBmgJaA9DCDWbx2EwenJAlIaUUpRoFUueaBZHQLdMWDiwSrZ1fZQoaAZoCWgPQwiBJOzbCWt0QJSGlFKUaBVL1GgWR0C3TGFQ/HHWdX2UKGgGaAloD0MIhj3t8FeKcECUhpRSlGgVS6doFkdAt0xkcLjPwHV9lChoBmgJaA9DCFa5UPkX4HFAlIaUUpRoFUufaBZHQLdMdlZ5iVl1fZQoaAZoCWgPQwgz/KcbqBpzQJSGlFKUaBVLxGgWR0C3TIA+Y+jedX2UKGgGaAloD0MIHJlH/mAjcUCUhpRSlGgVS6doFkdAt0yKMXJo03V9lChoBmgJaA9DCHkfR3Nk9XJAlIaUUpRoFUusaBZHQLdMkHIIWxh1fZQoaAZoCWgPQwg3pbxWQlNyQJSGlFKUaBVLrmgWR0C3TJYKx9ofdX2UKGgGaAloD0MIv7UTJWHJckCUhpRSlGgVS7JoFkdAt0ypU5uIh3V9lChoBmgJaA9DCL4Ts17MiHJAlIaUUpRoFUu1aBZHQLdM1PhAGB51fZQoaAZoCWgPQwhVMCqpEwZxQJSGlFKUaBVLpWgWR0C3TQO76Hj7dX2UKGgGaAloD0MIw2SqYBThcUCUhpRSlGgVS6doFkdAt01AB5ooNXV9lChoBmgJaA9DCNRfr7DgzHBAlIaUUpRoFUujaBZHQLdNSC8e0Xx1fZQoaAZoCWgPQwhjsyPV9wpzQJSGlFKUaBVNVAFoFkdAt01Huqm0mnV9lChoBmgJaA9DCCHJrN7hPXBAlIaUUpRoFUuvaBZHQLdNccf/3nJ1fZQoaAZoCWgPQwgZ6NoXUAVwQJSGlFKUaBVLnWgWR0C3TYmnwXqJdX2UKGgGaAloD0MILqnabsJPcUCUhpRSlGgVS7poFkdAt02PesPrfXV9lChoBmgJaA9DCC81Qj/TdHFAlIaUUpRoFUuWaBZHQLdNlJ4B3id1fZQoaAZoCWgPQwgeozzzckNxQJSGlFKUaBVLsGgWR0C3TaBQ79ycdX2UKGgGaAloD0MIuk4jLdWYcUCUhpRSlGgVS6BoFkdAt02oqWkadnV9lChoBmgJaA9DCDpdFhNb3nBAlIaUUpRoFUuMaBZHQLdNvd8zAN51fZQoaAZoCWgPQwjW5Cmr6XJyQJSGlFKUaBVLuGgWR0C3TcznJT2ndX2UKGgGaAloD0MIuw9AalNFdECUhpRSlGgVS69oFkdAt03MjZ+QVHV9lChoBmgJaA9DCFPPglAeNHJAlIaUUpRoFUuVaBZHQLdN4oZhrnF1fZQoaAZoCWgPQwi30JUI1DpzQJSGlFKUaBVLwWgWR0C3TeKgM+eOdX2UKGgGaAloD0MIAKjixq23ckCUhpRSlGgVS8FoFkdAt03s0ygwoXV9lChoBmgJaA9DCFMkXwmkdHNAlIaUUpRoFUvPaBZHQLdN7P9DQZ51fZQoaAZoCWgPQwhhpBe1u/5wQJSGlFKUaBVLvmgWR0C3Tf/E0iyIdX2UKGgGaAloD0MIRDF5A8wUdECUhpRSlGgVS7NoFkdAt04PMTviLnV9lChoBmgJaA9DCB8Svve3JHNAlIaUUpRoFUu5aBZHQLdOGRsMy8B1fZQoaAZoCWgPQwhRZ+4h4R5xQJSGlFKUaBVLqGgWR0C3Ti81XNkfdX2UKGgGaAloD0MItVNzuYG/cECUhpRSlGgVS7BoFkdAt0444jrzG3V9lChoBmgJaA9DCPInKhuWcnFAlIaUUpRoFUuwaBZHQLdOTE5Qxet1fZQoaAZoCWgPQwjFH0Wd+WRxQJSGlFKUaBVLtWgWR0C3Tl75IpYtdX2UKGgGaAloD0MIoblOI23Lc0CUhpRSlGgVS8doFkdAt05exFAmiXV9lChoBmgJaA9DCL1tpkL8BnJAlIaUUpRoFUuraBZHQLdOYGgSOBF1fZQoaAZoCWgPQwh5HtydNXFyQJSGlFKUaBVLwmgWR0C3ToVCswL3dX2UKGgGaAloD0MI5iDoaFWzc0CUhpRSlGgVS7doFkdAt06sfV7QcHV9lChoBmgJaA9DCAdgAyIE0HFAlIaUUpRoFUu2aBZHQLdO20f5k9V1fZQoaAZoCWgPQwj9+iE2GLpyQJSGlFKUaBVLw2gWR0C3T0m16Vt5dX2UKGgGaAloD0MIEaeTbHUZc0CUhpRSlGgVS8ZoFkdAt09SJUHY6HV9lChoBmgJaA9DCLQB2ICIH3RAlIaUUpRoFUvKaBZHQLdPVgccU/R1fZQoaAZoCWgPQwijI7n8x+VxQJSGlFKUaBVLrmgWR0C3T2BeokzHdX2UKGgGaAloD0MIJc0f09pvZ0CUhpRSlGgVTegDaBZHQLdPbC6Ymb91fZQoaAZoCWgPQwjOjekJC0lxQJSGlFKUaBVLrWgWR0C3T3Kynk1edX2UKGgGaAloD0MIA7Fs5pBwcECUhpRSlGgVS7loFkdAt0957eEZi3V9lChoBmgJaA9DCIwwRbn0bXFAlIaUUpRoFUulaBZHQLdPfruYx+N1ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 918,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.95,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 1,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 3,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2-updates/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:427c5a5abbeaaf3f0a9b3cb6f2d8cf095d771c3bfb0a034b96d148c166404a42
|
3 |
+
size 87929
|
ppo-LunarLander-v2-updates/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e294e6a3fd1e9febaa355c4ab1c27ef6aff39fc09ef37dff9f33f2b34dd18c29
|
3 |
+
size 43201
|
ppo-LunarLander-v2-updates/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2-updates/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
|
2 |
+
Python: 3.8.16
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.13.0+cu116
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (201 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 296.52059526739583, "std_reward": 12.937613622366701, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-18T12:30:56.210090"}
|