Add indexer.py
Browse files- indexer.py +44 -44
indexer.py
CHANGED
|
@@ -1,44 +1,44 @@
|
|
| 1 |
-
"""
|
| 2 |
-
ZamAI Document Indexer
|
| 3 |
-
This script helps add new documents to the embedding vector database.
|
| 4 |
-
"""
|
| 5 |
-
import os
|
| 6 |
-
import argparse
|
| 7 |
-
from llama_index.readers.file import SimpleDirectoryReader
|
| 8 |
-
from setup import setup_embedding_model
|
| 9 |
-
|
| 10 |
-
def index_documents(corpus_path, db_path=None):
|
| 11 |
-
"""
|
| 12 |
-
Index documents from the specified corpus path into the vector database.
|
| 13 |
-
|
| 14 |
-
Args:
|
| 15 |
-
corpus_path: Path to the directory containing documents to index
|
| 16 |
-
db_path: Optional custom path for the ChromaDB database
|
| 17 |
-
"""
|
| 18 |
-
if not os.path.exists(corpus_path):
|
| 19 |
-
print(f"Error: Directory {corpus_path} does not exist.")
|
| 20 |
-
return
|
| 21 |
-
|
| 22 |
-
if not os.listdir(corpus_path):
|
| 23 |
-
print(f"Error: No files found in {corpus_path}")
|
| 24 |
-
return
|
| 25 |
-
|
| 26 |
-
# Set up embedding model and components
|
| 27 |
-
db_path = db_path or "./models/embeddings/chroma_db"
|
| 28 |
-
embedding_components = setup_embedding_model(corpus_path=corpus_path, db_path=db_path)
|
| 29 |
-
|
| 30 |
-
print(f"Successfully indexed documents from {corpus_path}")
|
| 31 |
-
print(f"Vector database stored at {db_path}")
|
| 32 |
-
|
| 33 |
-
# Return the components if needed for further processing
|
| 34 |
-
return embedding_components
|
| 35 |
-
|
| 36 |
-
if __name__ == "__main__":
|
| 37 |
-
parser = argparse.ArgumentParser(description="Index documents for ZamAI embeddings")
|
| 38 |
-
parser.add_argument("--corpus", type=str, default="data/text_corpus/",
|
| 39 |
-
help="Path to the directory containing documents to index")
|
| 40 |
-
parser.add_argument("--db", type=str, default=None,
|
| 41 |
-
help="Path to store the ChromaDB database (optional)")
|
| 42 |
-
|
| 43 |
-
args = parser.parse_args()
|
| 44 |
-
index_documents(args.corpus, args.db)
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
ZamAI Document Indexer
|
| 3 |
+
This script helps add new documents to the embedding vector database.
|
| 4 |
+
"""
|
| 5 |
+
import os
|
| 6 |
+
import argparse
|
| 7 |
+
from llama_index.readers.file import SimpleDirectoryReader
|
| 8 |
+
from setup import setup_embedding_model
|
| 9 |
+
|
| 10 |
+
def index_documents(corpus_path, db_path=None):
|
| 11 |
+
"""
|
| 12 |
+
Index documents from the specified corpus path into the vector database.
|
| 13 |
+
|
| 14 |
+
Args:
|
| 15 |
+
corpus_path: Path to the directory containing documents to index
|
| 16 |
+
db_path: Optional custom path for the ChromaDB database
|
| 17 |
+
"""
|
| 18 |
+
if not os.path.exists(corpus_path):
|
| 19 |
+
print(f"Error: Directory {corpus_path} does not exist.")
|
| 20 |
+
return
|
| 21 |
+
|
| 22 |
+
if not os.listdir(corpus_path):
|
| 23 |
+
print(f"Error: No files found in {corpus_path}")
|
| 24 |
+
return
|
| 25 |
+
|
| 26 |
+
# Set up embedding model and components
|
| 27 |
+
db_path = db_path or "./models/embeddings/chroma_db"
|
| 28 |
+
embedding_components = setup_embedding_model(corpus_path=corpus_path, db_path=db_path)
|
| 29 |
+
|
| 30 |
+
print(f"Successfully indexed documents from {corpus_path}")
|
| 31 |
+
print(f"Vector database stored at {db_path}")
|
| 32 |
+
|
| 33 |
+
# Return the components if needed for further processing
|
| 34 |
+
return embedding_components
|
| 35 |
+
|
| 36 |
+
if __name__ == "__main__":
|
| 37 |
+
parser = argparse.ArgumentParser(description="Index documents for ZamAI embeddings")
|
| 38 |
+
parser.add_argument("--corpus", type=str, default="data/text_corpus/",
|
| 39 |
+
help="Path to the directory containing documents to index")
|
| 40 |
+
parser.add_argument("--db", type=str, default=None,
|
| 41 |
+
help="Path to store the ChromaDB database (optional)")
|
| 42 |
+
|
| 43 |
+
args = parser.parse_args()
|
| 44 |
+
index_documents(args.corpus, args.db)
|