tasal9's picture
Initial commit to Hugging Face
477cc73
raw
history blame
1.22 kB
"""
ZamAI Embeddings Demo Application
This script creates a web interface for querying documents using multilingual embeddings.
"""
import gradio as gr
from setup import setup_embedding_model
# Set up the embedding model and query engine
print("Setting up embedding model and vector database...")
embedding_components = setup_embedding_model()
query_engine = embedding_components["query_engine"]
# Define the query function
def answer_query(query):
"""Process a user query and return relevant information from indexed documents"""
if not query.strip():
return "Please enter a query."
try:
result = query_engine.query(query)
return str(result)
except Exception as e:
return f"Error processing query: {str(e)}"
# Create the Gradio interface
iface = gr.Interface(
fn=answer_query,
inputs=gr.Textbox(lines=2, placeholder="Ask in any language (English, Pashto, etc.)"),
outputs="text",
title="ZamAI Multilingual Embeddings Demo",
description="Ask questions about your documents in any language, including Pashto and English."
)
if __name__ == "__main__":
print("Starting Gradio web interface...")
iface.launch()
print("Interface closed.")