Update to README.md
Browse files
README.md
CHANGED
@@ -1 +1,42 @@
|
|
1 |
-
EstBERT_NER
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# EstBERT_NER
|
2 |
+
|
3 |
+
## Model description
|
4 |
+
|
5 |
+
EstBERT_NER is a fine-tuned EstBERT model that can be used for Named Entity Recognition. This model was trained on the Estonian NER dataset created by [Tkachenko et al](https://www.aclweb.org/anthology/W13-2412.pdf). It can recognize three types of entities: locations (LOC), organizations (ORG) and persons (PER).
|
6 |
+
|
7 |
+
## How to use
|
8 |
+
|
9 |
+
You can use this model with Transformers pipeline for NER. Post-processing of results may be necessary as the model occasionally tags subword tokens as entities.
|
10 |
+
|
11 |
+
```
|
12 |
+
from transformers import AutoTokenizer, AutoModelForTokenClassification
|
13 |
+
from transformers import pipeline
|
14 |
+
|
15 |
+
tokenizer = BertTokenizer.from_pretrained('tartuNLP/EstBERT_NER')
|
16 |
+
bertner = BertForTokenClassification.from_pretrained('tartuNLP/EstBERT_NER')
|
17 |
+
|
18 |
+
nlp = pipeline("ner", model=bertner, tokenizer=tokenizer)
|
19 |
+
sentence = 'Eesti Ekspressi teada on Eesti Pank uurinud Hansapanga tehinguid , mis toimusid kaks aastat tagasi suvel ja mille käigus voolas panka ligi miljardi krooni ulatuses kahtlast raha .'
|
20 |
+
|
21 |
+
ner_results = nlp(sentence)
|
22 |
+
print(ner_results)
|
23 |
+
```
|
24 |
+
```
|
25 |
+
[{'word': 'Eesti', 'score': 0.9964128136634827, 'entity': 'B-ORG', 'index': 1}, {'word': 'Ekspressi', 'score': 0.9978809356689453, 'entity': 'I-ORG', 'index': 2}, {'word': 'Eesti', 'score': 0.9988121390342712, 'entity': 'B-ORG', 'index': 5}, {'word': 'Pank', 'score': 0.9985784292221069, 'entity': 'I-ORG', 'index': 6}, {'word': 'Hansapanga', 'score': 0.9979034662246704, 'entity': 'B-ORG', 'index': 8}]
|
26 |
+
|
27 |
+
```
|
28 |
+
|
29 |
+
|
30 |
+
|
31 |
+
## BibTeX entry and citation info
|
32 |
+
|
33 |
+
```
|
34 |
+
@misc{tanvir2020estbert,
|
35 |
+
title={EstBERT: A Pretrained Language-Specific BERT for Estonian},
|
36 |
+
author={Hasan Tanvir and Claudia Kittask and Kairit Sirts},
|
37 |
+
year={2020},
|
38 |
+
eprint={2011.04784},
|
39 |
+
archivePrefix={arXiv},
|
40 |
+
primaryClass={cs.CL}
|
41 |
+
}
|
42 |
+
```
|