ksirts commited on
Commit
9ddab70
1 Parent(s): b0595c0

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +114 -71
README.md CHANGED
@@ -6,7 +6,7 @@ datasets:
6
  metrics:
7
  - accuracy
8
  model-index:
9
- - name: estbert128_lr5e-5_b64_s2
10
  results:
11
  - task:
12
  name: Text Classification
@@ -19,31 +19,70 @@ model-index:
19
  - name: Accuracy
20
  type: accuracy
21
  value: 0.7926136255264282
 
 
 
 
 
 
 
22
  ---
23
 
24
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
25
  should probably proofread and complete it, then remove this comment. -->
26
 
27
- # estbert128_lr5e-5_b64_s2
28
 
29
- This model is a fine-tuned version of [tartuNLP/EstBERT](https://huggingface.co/tartuNLP/EstBERT) on the sentiment_reduced dataset.
30
- It achieves the following results on the evaluation set:
 
 
31
  - Loss: 2.2440
32
  - Accuracy: 0.7926
33
 
 
 
 
 
34
  ## Model description
35
 
36
- More information needed
37
 
38
  ## Intended uses & limitations
39
 
40
- More information needed
 
 
 
 
 
 
 
 
 
 
 
 
 
41
 
42
  ## Training and evaluation data
43
 
44
- More information needed
 
 
 
 
 
 
 
 
 
 
 
45
 
46
  ## Training procedure
 
 
47
 
48
  ### Training hyperparameters
49
 
@@ -60,73 +99,74 @@ The following hyperparameters were used during training:
60
  - mixed_precision_training: Native AMP
61
 
62
  ### Training results
 
63
 
64
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
65
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
66
- | 0.836 | 0.99 | 38 | 0.6966 | 0.7216 |
67
- | 0.5336 | 1.99 | 76 | 0.5948 | 0.7699 |
68
- | 0.2913 | 2.99 | 114 | 0.7197 | 0.7358 |
69
- | 0.1048 | 3.99 | 152 | 0.9570 | 0.7557 |
70
- | 0.0424 | 4.99 | 190 | 1.2144 | 0.7528 |
71
- | 0.0262 | 5.99 | 228 | 1.2675 | 0.7727 |
72
- | 0.0169 | 6.99 | 266 | 1.4788 | 0.75 |
73
- | 0.0048 | 7.99 | 304 | 1.5053 | 0.7699 |
74
- | 0.0084 | 8.99 | 342 | 1.5368 | 0.7614 |
75
- | 0.0087 | 9.99 | 380 | 1.6678 | 0.7699 |
76
- | 0.0082 | 10.99 | 418 | 1.7598 | 0.7642 |
77
- | 0.0104 | 11.99 | 456 | 1.6951 | 0.7528 |
78
- | 0.0115 | 12.99 | 494 | 1.7123 | 0.7727 |
79
- | 0.0111 | 13.99 | 532 | 1.7577 | 0.7528 |
80
- | 0.0028 | 14.99 | 570 | 1.7383 | 0.7727 |
81
- | 0.0032 | 15.99 | 608 | 2.0254 | 0.7727 |
82
- | 0.0107 | 16.99 | 646 | 2.2123 | 0.7415 |
83
- | 0.0056 | 17.99 | 684 | 1.9406 | 0.7614 |
84
- | 0.0078 | 18.99 | 722 | 2.2002 | 0.7642 |
85
- | 0.0041 | 19.99 | 760 | 2.0157 | 0.7670 |
86
- | 0.0087 | 20.99 | 798 | 2.1228 | 0.7642 |
87
- | 0.0113 | 21.99 | 836 | 2.3692 | 0.7727 |
88
- | 0.0025 | 22.99 | 874 | 2.2211 | 0.75 |
89
- | 0.0083 | 23.99 | 912 | 2.2120 | 0.7841 |
90
- | 0.0104 | 24.99 | 950 | 2.1478 | 0.7614 |
91
- | 0.0041 | 25.99 | 988 | 2.1118 | 0.7756 |
92
- | 0.002 | 26.99 | 1026 | 1.9929 | 0.7699 |
93
- | 0.001 | 27.99 | 1064 | 2.0295 | 0.7841 |
94
- | 0.003 | 28.99 | 1102 | 2.3142 | 0.7699 |
95
- | 0.006 | 29.99 | 1140 | 2.2957 | 0.7642 |
96
- | 0.0005 | 30.99 | 1178 | 2.0661 | 0.7642 |
97
- | 0.0007 | 31.99 | 1216 | 2.4220 | 0.7614 |
98
- | 0.0088 | 32.99 | 1254 | 2.2842 | 0.7614 |
99
- | 0.0 | 33.99 | 1292 | 2.4060 | 0.7585 |
100
- | 0.0 | 34.99 | 1330 | 2.2088 | 0.7585 |
101
- | 0.0 | 35.99 | 1368 | 2.2181 | 0.7614 |
102
- | 0.0 | 36.99 | 1406 | 2.2560 | 0.7784 |
103
- | 0.0 | 37.99 | 1444 | 2.4803 | 0.7585 |
104
- | 0.0 | 38.99 | 1482 | 2.1163 | 0.7812 |
105
- | 0.0087 | 39.99 | 1520 | 2.3410 | 0.75 |
106
- | 0.0021 | 40.99 | 1558 | 2.3583 | 0.75 |
107
- | 0.0054 | 41.99 | 1596 | 2.3546 | 0.7642 |
108
- | 0.0051 | 42.99 | 1634 | 2.2295 | 0.7812 |
109
- | 0.0 | 43.99 | 1672 | 2.2440 | 0.7926 |
110
- | 0.0019 | 44.99 | 1710 | 2.3248 | 0.7784 |
111
- | 0.0044 | 45.99 | 1748 | 2.3058 | 0.7841 |
112
- | 0.0006 | 46.99 | 1786 | 2.3588 | 0.7784 |
113
- | 0.0007 | 47.99 | 1824 | 2.6541 | 0.7670 |
114
- | 0.0001 | 48.99 | 1862 | 2.4621 | 0.7614 |
115
- | 0.0 | 49.99 | 1900 | 2.4696 | 0.7727 |
116
- | 0.0 | 50.99 | 1938 | 2.4981 | 0.7670 |
117
- | 0.0031 | 51.99 | 1976 | 2.6702 | 0.7670 |
118
- | 0.0 | 52.99 | 2014 | 2.4448 | 0.7756 |
119
- | 0.0 | 53.99 | 2052 | 2.4214 | 0.7756 |
120
- | 0.0 | 54.99 | 2090 | 2.4308 | 0.7841 |
121
- | 0.0001 | 55.99 | 2128 | 2.5869 | 0.7642 |
122
- | 0.0007 | 56.99 | 2166 | 2.4803 | 0.7727 |
123
- | 0.0 | 57.99 | 2204 | 2.4557 | 0.7784 |
124
- | 0.0 | 58.99 | 2242 | 2.4702 | 0.7784 |
125
- | 0.0 | 59.99 | 2280 | 2.5165 | 0.7784 |
126
- | 0.0013 | 60.99 | 2318 | 2.6322 | 0.7727 |
127
- | 0.0001 | 61.99 | 2356 | 2.6253 | 0.7756 |
128
- | 0.0011 | 62.99 | 2394 | 2.6303 | 0.7841 |
129
- | 0.0002 | 63.99 | 2432 | 2.5646 | 0.7614 |
130
 
131
 
132
  ### Framework versions
@@ -135,3 +175,6 @@ The following hyperparameters were used during training:
135
  - Pytorch 1.10.1+cu113
136
  - Datasets 1.16.1
137
  - Tokenizers 0.10.3
 
 
 
 
6
  metrics:
7
  - accuracy
8
  model-index:
9
+ - name: EstBERT128_Sentiment
10
  results:
11
  - task:
12
  name: Text Classification
 
19
  - name: Accuracy
20
  type: accuracy
21
  value: 0.7926136255264282
22
+ widget:
23
+ - text: "Enam kui kümme aastat tagasi tegutses huumorisaates «Wremja» inspektor Kukeke, kes kogu aeg vingus väikese palga pärast ja vaatas, mida saaks töö juurest koju tassida. Stsenaristid Andrus Kivirähk ja Mart Juur olid Kukekese isikusse kokku valanud kõik, mis 1990. aastate Eesti politseinikke halvast küljest iseloomustas."
24
+ example_title: "negative"
25
+ - text: "Isiklikult kohtasin natukegi Kukekese moodi politseinikku viimati kaheksa aasta eest Lätis. Eranditult kõik viimase kümnendi kokkupuuted politseiametnikega on kinnitanud: vaatamata raskustele on Eesti riik suutnud korrakaitsjateks värvata inimesi, kes on arukad, kohusetundlikud, lugupidamist sisendavas füüsilises vormis ja hea väljendusoskusega."
26
+ example_title: "positive"
27
+ - text: "Pisut retooriline küsimus, kelle või mille jaoks on Estonian Ai, nõuab taas vastust. Oleme jõudnud olukorda, kus vastus peaks olema juba konkreetne. Siinkohal tuleks hoiduda rahvusliku lennukompanii mõistest, mis pärineb ajast, kui lennundusäri oli peaaegu sajaprotsendiliselt riigi kontrolli all ning riigid ja nende grupeeringud reguleerisid äärmise põhjalikkusega lennundusturgu."
28
+ example_title: "neutral"
29
  ---
30
 
31
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
32
  should probably proofread and complete it, then remove this comment. -->
33
 
34
+ # EstBERT128_sentiment
35
 
36
+ This model is a fine-tuned version of [tartuNLP/EstBERT](https://huggingface.co/tartuNLP/EstBERT) on the reduced version of the [Estonian Valence corpus](https://figshare.com/articles/dataset/Estonian_Valence_Corpus_Eesti_valentsikorpus/24517054), where the items with Mixed labels were removed.
37
+ The data (containing Positive, Negative and Neutral labels) was split into 70/10/20 train/dev/test splits.
38
+
39
+ It achieves the following results on the developments split:
40
  - Loss: 2.2440
41
  - Accuracy: 0.7926
42
 
43
+ It achieves the following results on the test split:
44
+ - Loss: 2.7633
45
+ - Accuracy: 0.7479
46
+
47
  ## Model description
48
 
49
+ A single linear layer classifier is fit on top of the last layer [CLS] token representation of the EstBERT model. The model is fully fine-tuned during training.
50
 
51
  ## Intended uses & limitations
52
 
53
+ This model is intended to be used as it is. We hope that it can prove to be useful to somebody but we do not guarantee that the model is useful for anything or that the predictions are accurate on new data.
54
+
55
+ ## Citation information
56
+ If you use this model, please cite:
57
+
58
+ ```
59
+ @inproceedings{tanvir2021estbert,
60
+ title={EstBERT: A Pretrained Language-Specific BERT for Estonian},
61
+ author={Tanvir, Hasan and Kittask, Claudia and Eiche, Sandra and Sirts, Kairit},
62
+ booktitle={Proceedings of the 23rd Nordic Conference on Computational Linguistics (NoDaLiDa)},
63
+ pages={11--19},
64
+ year={2021}
65
+ }
66
+ ```
67
 
68
  ## Training and evaluation data
69
 
70
+ The model was trained and evaluated on the sentiment categories of the [Estonian Valence corpus](https://figshare.com/articles/dataset/Estonian_Valence_Corpus_Eesti_valentsikorpus/24517054).
71
+ The data was split into train/dev/test parts with 70/10/20 proportions.
72
+
73
+ The Estonian Valence corpus has four sentiment labels:
74
+ - positive
75
+ - negative
76
+ - neutral
77
+ - mixed
78
+
79
+ Following [Pajupuu et al., 2016](https://www.researchgate.net/profile/Hille-Pajupuu/publication/303837298_Identifying_Polarity_in_Different_Text_Types/links/575711e308ae05c1ec16ce05/Identifying-Polarity-in-Different-Text-Types.pdf), the items with mixed labels were removed.
80
+ Thus, the model was trained and evaluated on the reduced version of the dataset containing only three labels (positive, negative and neutral).
81
+
82
 
83
  ## Training procedure
84
+ The model was trained for maximu 100 epochs using early stopping procedure. After every epoch, the accuracy was calculated on the development set.
85
+ If the development set accuracy did not improve for 20 epochs, the training was stopped.
86
 
87
  ### Training hyperparameters
88
 
 
99
  - mixed_precision_training: Native AMP
100
 
101
  ### Training results
102
+ The final model was taken after 44th epoch.
103
 
104
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
105
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
106
+ | 0.836 | 1 | 38 | 0.6966 | 0.7216 |
107
+ | 0.5336 | 2 | 76 | 0.5948 | 0.7699 |
108
+ | 0.2913 | 3 | 114 | 0.7197 | 0.7358 |
109
+ | 0.1048 | 4 | 152 | 0.9570 | 0.7557 |
110
+ | 0.0424 | 5 | 190 | 1.2144 | 0.7528 |
111
+ | 0.0262 | 6 | 228 | 1.2675 | 0.7727 |
112
+ | 0.0169 | 7 | 266 | 1.4788 | 0.75 |
113
+ | 0.0048 | 8 | 304 | 1.5053 | 0.7699 |
114
+ | 0.0084 | 9 | 342 | 1.5368 | 0.7614 |
115
+ | 0.0087 | 10 | 380 | 1.6678 | 0.7699 |
116
+ | 0.0082 | 11 | 418 | 1.7598 | 0.7642 |
117
+ | 0.0104 | 12 | 456 | 1.6951 | 0.7528 |
118
+ | 0.0115 | 13 | 494 | 1.7123 | 0.7727 |
119
+ | 0.0111 | 14 | 532 | 1.7577 | 0.7528 |
120
+ | 0.0028 | 15 | 570 | 1.7383 | 0.7727 |
121
+ | 0.0032 | 16 | 608 | 2.0254 | 0.7727 |
122
+ | 0.0107 | 17 | 646 | 2.2123 | 0.7415 |
123
+ | 0.0056 | 18 | 684 | 1.9406 | 0.7614 |
124
+ | 0.0078 | 19 | 722 | 2.2002 | 0.7642 |
125
+ | 0.0041 | 20 | 760 | 2.0157 | 0.7670 |
126
+ | 0.0087 | 21 | 798 | 2.1228 | 0.7642 |
127
+ | 0.0113 | 22 | 836 | 2.3692 | 0.7727 |
128
+ | 0.0025 | 23 | 874 | 2.2211 | 0.75 |
129
+ | 0.0083 | 24 | 912 | 2.2120 | 0.7841 |
130
+ | 0.0104 | 25 | 950 | 2.1478 | 0.7614 |
131
+ | 0.0041 | 26 | 988 | 2.1118 | 0.7756 |
132
+ | 0.002 | 27 | 1026 | 1.9929 | 0.7699 |
133
+ | 0.001 | 28 | 1064 | 2.0295 | 0.7841 |
134
+ | 0.003 | 29 | 1102 | 2.3142 | 0.7699 |
135
+ | 0.006 | 30 | 1140 | 2.2957 | 0.7642 |
136
+ | 0.0005 | 31 | 1178 | 2.0661 | 0.7642 |
137
+ | 0.0007 | 32 | 1216 | 2.4220 | 0.7614 |
138
+ | 0.0088 | 33 | 1254 | 2.2842 | 0.7614 |
139
+ | 0.0 | 34 | 1292 | 2.4060 | 0.7585 |
140
+ | 0.0 | 35 | 1330 | 2.2088 | 0.7585 |
141
+ | 0.0 | 36 | 1368 | 2.2181 | 0.7614 |
142
+ | 0.0 | 37 | 1406 | 2.2560 | 0.7784 |
143
+ | 0.0 | 38 | 1444 | 2.4803 | 0.7585 |
144
+ | 0.0 | 39 | 1482 | 2.1163 | 0.7812 |
145
+ | 0.0087 | 40 | 1520 | 2.3410 | 0.75 |
146
+ | 0.0021 | 41 | 1558 | 2.3583 | 0.75 |
147
+ | 0.0054 | 42 | 1596 | 2.3546 | 0.7642 |
148
+ | 0.0051 | 43 | 1634 | 2.2295 | 0.7812 |
149
+ | 0.0 | 44 | 1672 | 2.2440 | 0.7926 |
150
+ | 0.0019 | 45 | 1710 | 2.3248 | 0.7784 |
151
+ | 0.0044 | 46 | 1748 | 2.3058 | 0.7841 |
152
+ | 0.0006 | 47 | 1786 | 2.3588 | 0.7784 |
153
+ | 0.0007 | 48 | 1824 | 2.6541 | 0.7670 |
154
+ | 0.0001 | 49 | 1862 | 2.4621 | 0.7614 |
155
+ | 0.0 | 50 | 1900 | 2.4696 | 0.7727 |
156
+ | 0.0 | 51 | 1938 | 2.4981 | 0.7670 |
157
+ | 0.0031 | 52 | 1976 | 2.6702 | 0.7670 |
158
+ | 0.0 | 53 | 2014 | 2.4448 | 0.7756 |
159
+ | 0.0 | 54 | 2052 | 2.4214 | 0.7756 |
160
+ | 0.0 | 55 | 2090 | 2.4308 | 0.7841 |
161
+ | 0.0001 | 56 | 2128 | 2.5869 | 0.7642 |
162
+ | 0.0007 | 57 | 2166 | 2.4803 | 0.7727 |
163
+ | 0.0 | 58 | 2204 | 2.4557 | 0.7784 |
164
+ | 0.0 | 59 | 2242 | 2.4702 | 0.7784 |
165
+ | 0.0 | 60 | 2280 | 2.5165 | 0.7784 |
166
+ | 0.0013 | 61 | 2318 | 2.6322 | 0.7727 |
167
+ | 0.0001 | 62 | 2356 | 2.6253 | 0.7756 |
168
+ | 0.0011 | 63 | 2394 | 2.6303 | 0.7841 |
169
+ | 0.0002 | 64 | 2432 | 2.5646 | 0.7614 |
170
 
171
 
172
  ### Framework versions
 
175
  - Pytorch 1.10.1+cu113
176
  - Datasets 1.16.1
177
  - Tokenizers 0.10.3
178
+
179
+ ### Contact
180
+ Kairit Sirts: kairit.sirts@ut.ee