ppo-LunarLander-v2 / config.json
tarpalsus's picture
PPO LunarLander agent
95a8139 verified
raw
history blame
13.8 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7beb95ff1f30>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7beb95ff1fc0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7beb95ff2050>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7beb95ff20e0>", "_build": "<function ActorCriticPolicy._build at 0x7beb95ff2170>", "forward": "<function ActorCriticPolicy.forward at 0x7beb95ff2200>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7beb95ff2290>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7beb95ff2320>", "_predict": "<function ActorCriticPolicy._predict at 0x7beb95ff23b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7beb95ff2440>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7beb95ff24d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7beb95ff2560>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7beb95f9d980>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1712776077254150143, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAAWjTzSO5I8gDXWPDGsHr7Da9E69TtlPAAAAAAAAAAAnfVnvpTuuj4bEgE+z/GXvvPxBr3e5uo6AAAAAAAAAAAzH8g9cZBRPElIA76M9Ta+zQ3BPOB2WLwAAAAAAAAAADCRg74aQWo/mzTRvgOTAr/he8a+yl2lvQAAAAAAAAAAg1eAPmD6AT8VI3K+I+h5vtaNobxaTLu9AAAAAAAAAABmY2k94dSaunD0rLY6oamxU3xIuKb2xzUAAIA/AACAP1pk5T1tJr8+wo1QvlOYJL4d5my95MyvOwAAAAAAAAAAk1MHvg2vED/1Qag9aYmdvtpKFL1IPig8AAAAAAAAAABT3EM+9nsQPyo0Ob7ht7C+la+0O8b0ebwAAAAAAAAAAM0OELxGx6o+Bi9xvY4BiL5fJ/i8fLydvQAAAAAAAAAAzRyCPVvbfz+Y+d68K2a/vqHJgD3qAda8AAAAAAAAAAAzJo+8cfZDuxLEWTxZr4Q82U+QvNU+ZT0AAIA/AACAPwAAizplVbM/Bp8qO5rHJ742lcM8RCyPPQAAAAAAAAAAgGgDvQ5Qpz2gZHy9/bAovjHYor2WfZk9AAAAAAAAAAAaCTO9vSi6PyhK57650909AxuQvMU+K74AAAAAAAAAAIBay73tGyo/FHeLvNZ+xr6TpQq98qx1PAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHGKR5Pdl/aMAWyUTU0BjAF0lEdAk20snE2pAHV9lChoBkdAcQtACnxaxGgHTS4BaAhHQJNuET6BRQ91fZQoaAZHQHBtK0Y0l7doB00MAWgIR0CTbwagmJFcdX2UKGgGR0BwgJDNQj2SaAdNGgFoCEdAk28bOiWVvHV9lChoBkdAbzsQ04zabmgHTSABaAhHQJNvffbblBB1fZQoaAZHQHAXXFUADJVoB00wAWgIR0CTcOnTy8SPdX2UKGgGR0BxjcYdhiLEaAdNIgFoCEdAk3FmhVU+93V9lChoBkdAcFPSGrS3LGgHTSkBaAhHQJNxb5GjKxN1fZQoaAZHQGjT3IMjNY9oB00VAmgIR0CTccIcR15jdX2UKGgGR0Br2MscyWRjaAdNSwFoCEdAk3JjbBXS0HV9lChoBkdAcI3X3g1m8WgHTQQBaAhHQJNye9du5z51fZQoaAZHQG6p3eenQ6ZoB01DAWgIR0CTc+ozeoDQdX2UKGgGR0BBXF05lvqDaAdL+GgIR0CTdF0pVjqfdX2UKGgGR0Bv5ekk8ifQaAdNXwFoCEdAk3X4valDW3V9lChoBkdAcjW717IDHWgHTToBaAhHQJN20P6KtPp1fZQoaAZHQHG8zKPn0TVoB00iAWgIR0CTd0DnvDxcdX2UKGgGR0Bwm6R0U47zaAdNJAFoCEdAk3kOdXko4XV9lChoBkdAS1MKNQ0oB2gHS9toCEdAk3kpi3G4qnV9lChoBkdAcGPM8HObAmgHTZUBaAhHQJN5mG0u14R1fZQoaAZHQG1DVVxS5y5oB000AWgIR0CTehqrzXjEdX2UKGgGR0Bx2NGd7OVxaAdNQwFoCEdAk3o7lmvnsHV9lChoBkdAcJ82tuDSPWgHTQQBaAhHQJN7PXL/0d11fZQoaAZHQHHl5DArQPZoB00pAWgIR0CTe35vtMPCdX2UKGgGR0BxsYHE/B3zaAdNPQFoCEdAk3uxV+7UX3V9lChoBkdAbUCyon8baWgHTS8BaAhHQJN7t8twrDt1fZQoaAZHQHHRo6jnFHdoB02QAWgIR0CTe9G3nZCfdX2UKGgGR0BxzIQEpy6uaAdNRwFoCEdAk30AFLWZqnV9lChoBkdAcQ8Pd2xIKGgHTScBaAhHQJN9bpljEvV1fZQoaAZHQHCJ6rJbMX9oB00fAWgIR0CTfZ4/NZ/1dX2UKGgGR0BvicnVoYelaAdNEAFoCEdAk39Ma0hNd3V9lChoBkdAbUAQfZElV2gHTS4BaAhHQJN/eL9/BnB1fZQoaAZHQHA3+GXXyy5oB01VAWgIR0CTgj3wkPc0dX2UKGgGR0BvOE8YAKfGaAdNJQFoCEdAk4JqJuVHF3V9lChoBkdAbqVEfkmx+2gHTREBaAhHQJOC4TlDF611fZQoaAZHQEinyR0U471oB0viaAhHQJODDp6hQFd1fZQoaAZHQGxUvluFYdRoB00xAWgIR0CTg5XV9Wp7dX2UKGgGR0Bxi+vW6K+BaAdNQQFoCEdAk4OiEg4ffXV9lChoBkdAcgck0aZQYWgHTQIBaAhHQJOEUuWa+ex1fZQoaAZHQGzgT8HfMwFoB00eAWgIR0CThOAWi1zAdX2UKGgGR0BwMiZG8VYZaAdNUQFoCEdAk4WFJpWV/3V9lChoBkdAcVcrIYFaCGgHTTkBaAhHQJOGhreqJdl1fZQoaAZHQHHDHQpnYg9oB00BAWgIR0CThyySmqHXdX2UKGgGR0BwE0v0yxiYaAdNUQFoCEdAk4c4cWCVbHV9lChoBkdAcmAF5fMOgGgHTScBaAhHQJOITBciW3V1fZQoaAZHQG8BLk8zQ/poB006AWgIR0CTiGtlqagFdX2UKGgGR0Bvdw/C66J7aAdNHwFoCEdAk5yion8baXV9lChoBkdAcRARxLkCFWgHTSwBaAhHQJOdH2ugYgt1fZQoaAZHQEhnC9AX2uhoB0v1aAhHQJOdveMyaeB1fZQoaAZHQFAdEwFkhA5oB00CAWgIR0CTnjtwaR6odX2UKGgGR0Asczk6tDD1aAdL5WgIR0CTnxEOiFj/dX2UKGgGR0BwH+Y7aIvbaAdNKwFoCEdAk5/9+ocaO3V9lChoBkdAcLKMw1zhgmgHTSwBaAhHQJOgYyXUpd91fZQoaAZHQG07OBlMAWBoB001AWgIR0CToUC+10DEdX2UKGgGR0Bxx5rHlwLmaAdNXwFoCEdAk6Ir6P8ye3V9lChoBkdAbolMcp9ZzWgHTQcBaAhHQJOiLbUPQOZ1fZQoaAZHQGu+/CqIacZoB01WAWgIR0CTo4Gp++dtdX2UKGgGR0BwekT101ZUaAdNSAFoCEdAk6PrIo3JgnV9lChoBkdAQ+Szu4PPLWgHS+VoCEdAk6QomG/N7nV9lChoBkdAcjo88cMmW2gHTS4BaAhHQJOkqrT6SDB1fZQoaAZHQHHGReTmnwZoB022AWgIR0CTpMQbMotudX2UKGgGR0BuFi6H0se5aAdNTAFoCEdAk6WoOpbUw3V9lChoBkdAcM6jua4MF2gHTXIBaAhHQJOlyOp84Px1fZQoaAZHQG82TCk43m5oB00IAWgIR0CTpc82aUiZdX2UKGgGR0BwJjZ+QU5/aAdNIQFoCEdAk6cAssg+yXV9lChoBkdAbaoWpIczZmgHTSEBaAhHQJOnj5oGpuN1fZQoaAZHQHEXIjKPn0VoB00iAWgIR0CTqFKyv9tNdX2UKGgGR0BxGJgBtDUmaAdNHwFoCEdAk6kRWDHwPXV9lChoBkdAONSS3b212WgHS+ZoCEdAk6lIvSMLnnV9lChoBkdAcEp9srNGE2gHTRoBaAhHQJOqDEaVD8d1fZQoaAZHQHDwX7YTTORoB00cAWgIR0CTquWuX/o8dX2UKGgGR0BySTUPQOWjaAdNWwFoCEdAk6tH93r2QHV9lChoBkdAb2H8QZn+Q2gHTRQBaAhHQJOry+ueSSx1fZQoaAZHQG14lmOEM9doB00uAWgIR0CTrP2JBPbgdX2UKGgGR0BxrchIOH32aAdNJAFoCEdAk66U7wKBunV9lChoBkdAb4PIvJzT4WgHTSIBaAhHQJOuqIpH7P91fZQoaAZHQG6G5a3Zwn9oB01NAWgIR0CTrt+X7cfvdX2UKGgGR0BxMYj0L+glaAdNSgFoCEdAk67gbZOBUnV9lChoBkdAbS5efqX4TWgHTWQBaAhHQJOvG+GoJiR1fZQoaAZHQG7KVcD8tPJoB00HAWgIR0CTr9Hj6vaDdX2UKGgGR0BwI/buc+aCaAdNSQFoCEdAk6/hdIGyHHV9lChoBkdAcUgnpB5X2mgHTSMBaAhHQJOwHG5tm+V1fZQoaAZHQG+6FkhA4XJoB00SAWgIR0CTsW2Dg62fdX2UKGgGR0Bw0DRc/t6YaAdNJQFoCEdAk7MFk1/DtXV9lChoBkdAcTyNx2jfvWgHTUoBaAhHQJOzipT/ACZ1fZQoaAZHQHIBy6xxDLNoB01tAWgIR0CTs6JokAxSdX2UKGgGR0Bwzd4+r2g4aAdNGgFoCEdAk7PPd/J/5XV9lChoBkdAUi5lWfbsW2gHS9xoCEdAk7Xja9K28nV9lChoBkdAcRppD/lyR2gHTUABaAhHQJO18Ht4RmN1fZQoaAZHQGr7TdtVJcxoB01OAWgIR0CTt2UMG5c1dX2UKGgGR0BGuZM+NcW1aAdL4WgIR0CTuJwb2lEadX2UKGgGR0BvsnSF49owaAdNJQFoCEdAk7mWZAprlHV9lChoBkdAcey9x6v7nGgHTR8BaAhHQJO5mcQRPGh1fZQoaAZHQG9AAfMfRu1oB00qAWgIR0CTuhnB+F10dX2UKGgGR0BttY/oq0+laAdNMAFoCEdAk7q3X2/SIHV9lChoBkdAcKcVN5+pfmgHTX4BaAhHQJO7dMZgogF1fZQoaAZHQHEZRreqJdloB00tAWgIR0CTu6VDrqt6dX2UKGgGR0Bx02R0U47zaAdNWQFoCEdAk7z8oc7yQXV9lChoBkdAN7YsRQJokGgHS+JoCEdAk70wj+rEL3V9lChoBkdAcVnBt1p0wWgHTRIBaAhHQJO+LNVzZHx1fZQoaAZHQHLNp4bCJoFoB01HAWgIR0CTvjRekYXPdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}