taozi555 commited on
Commit
932845c
1 Parent(s): 0a83eac

Upload folder using huggingface_hub

Browse files
Files changed (48) hide show
  1. .gitattributes +2 -0
  2. added_tokens.json +4 -0
  3. config.json +27 -0
  4. data/.ipynb_checkpoints/ddd-checkpoint.py +60 -0
  5. data/.ipynb_checkpoints/magnum-checkpoint.yml +99 -0
  6. data/.ipynb_checkpoints/nemo-checkpoint.yml +94 -0
  7. data/.ipynb_checkpoints/pre_train-checkpoint.yml +86 -0
  8. data/.ipynb_checkpoints/test-checkpoint.py +62 -0
  9. data/ddd.py +60 -0
  10. data/magnum.yml +99 -0
  11. data/nemo.yml +94 -0
  12. data/pre_train.yml +86 -0
  13. data/test.py +62 -0
  14. data/valid_records.jsonl +3 -0
  15. generation_config.json +7 -0
  16. global_step606/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
  17. global_step606/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
  18. global_step606/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
  19. global_step606/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
  20. global_step606/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt +3 -0
  21. global_step606/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt +3 -0
  22. global_step606/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt +3 -0
  23. global_step606/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt +3 -0
  24. global_step606/mp_rank_00_model_states.pt +3 -0
  25. latest +1 -0
  26. merges.txt +0 -0
  27. model-00001-of-00005.safetensors +3 -0
  28. model-00002-of-00005.safetensors +3 -0
  29. model-00003-of-00005.safetensors +3 -0
  30. model-00004-of-00005.safetensors +3 -0
  31. model-00005-of-00005.safetensors +3 -0
  32. model.safetensors.index.json +370 -0
  33. rng_state_0.pth +3 -0
  34. rng_state_1.pth +3 -0
  35. rng_state_2.pth +3 -0
  36. rng_state_3.pth +3 -0
  37. rng_state_4.pth +3 -0
  38. rng_state_5.pth +3 -0
  39. rng_state_6.pth +3 -0
  40. rng_state_7.pth +3 -0
  41. scheduler.pt +3 -0
  42. special_tokens_map.json +30 -0
  43. tokenizer.json +3 -0
  44. tokenizer_config.json +0 -0
  45. trainer_state.json +0 -0
  46. training_args.bin +3 -0
  47. vocab.json +0 -0
  48. zero_to_fp32.py +760 -0
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ data/valid_records.jsonl filter=lfs diff=lfs merge=lfs -text
37
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
added_tokens.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "<|im_end|>": 131072,
3
+ "<|im_start|>": 131073
4
+ }
config.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/root/autodl-tmp/out/checkpoint-1902",
3
+ "architectures": [
4
+ "MistralForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 1,
8
+ "eos_token_id": 131072,
9
+ "head_dim": 128,
10
+ "hidden_act": "silu",
11
+ "hidden_size": 5120,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 14336,
14
+ "max_position_embeddings": 1024000,
15
+ "model_type": "mistral",
16
+ "num_attention_heads": 32,
17
+ "num_hidden_layers": 40,
18
+ "num_key_value_heads": 8,
19
+ "rms_norm_eps": 1e-05,
20
+ "rope_theta": 1000000.0,
21
+ "sliding_window": null,
22
+ "tie_word_embeddings": false,
23
+ "torch_dtype": "bfloat16",
24
+ "transformers_version": "4.46.3",
25
+ "use_cache": false,
26
+ "vocab_size": 131074
27
+ }
data/.ipynb_checkpoints/ddd-checkpoint.py ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+
3
+ def process_conversations(input_file, invalid_output_file, valid_output_file):
4
+ """
5
+ 解析 JSONL 文件,检查 `conversations` 列表是否符合条件:
6
+ - 必须存在
7
+ - 必须为列表
8
+ - 列表长度 >= 2
9
+ 将不符合条件的记录保存到 `invalid_output_file`,
10
+ 将符合条件的记录保存到 `valid_output_file`。
11
+ """
12
+ invalid_records = [] # 用于存储无效记录
13
+ valid_records = [] # 用于存储有效记录
14
+
15
+ with open(input_file, 'r', encoding='utf-8') as infile:
16
+ for line_number, line in enumerate(infile, start=1):
17
+ try:
18
+ # 尝试解析每一行 JSON
19
+ data = json.loads(line)
20
+
21
+ # 检查 `conversations` 是否存在且为非空列表,且长度 >= 2
22
+ if isinstance(data.get("conversations"), list) and len(data["conversations"]) >= 2:
23
+ valid_records.append(data) # 符合条件的记录
24
+ else:
25
+ invalid_records.append({
26
+ "line_number": line_number,
27
+ "data": data # 不符合条件的记录
28
+ })
29
+ except json.JSONDecodeError as e:
30
+ # 捕获 JSON 格式错误
31
+ invalid_records.append({
32
+ "line_number": line_number,
33
+ "error": f"JSONDecodeError: {str(e)}",
34
+ "data": line.strip() # 原始数据
35
+ })
36
+
37
+ # 将无效记录写入到无效输出文件
38
+ with open(invalid_output_file, 'w', encoding='utf-8') as invalid_file:
39
+ json.dump(invalid_records, invalid_file, ensure_ascii=False, indent=4)
40
+
41
+ # 将符合条件的记录写入到有效输出文件
42
+ with open(valid_output_file, 'w', encoding='utf-8') as valid_file:
43
+ for record in valid_records:
44
+ valid_file.write(json.dumps(record, ensure_ascii=False) + '\n')
45
+
46
+ # 打印统计信息
47
+ print(f"总记录数: {line_number}")
48
+ print(f"有效记录数: {len(valid_records)}")
49
+ print(f"无效记录数: {len(invalid_records)}")
50
+ print(f"无效记录已保存到: {invalid_output_file}")
51
+ print(f"有效记录已保存到: {valid_output_file}")
52
+
53
+
54
+ # 示例:指定输入和输出文件路径
55
+ input_file = "model5_digg1_safe.jsonl" # 输入的 JSONL 文件路径
56
+ invalid_output_file = "invalid_records.json" # 保存无效记录的文件路径
57
+ valid_output_file = "valid_records.jsonl" # 保存有效记录的文件路径
58
+
59
+ # 运行函数
60
+ process_conversations(input_file, invalid_output_file, valid_output_file)
data/.ipynb_checkpoints/magnum-checkpoint.yml ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ base_model: /root/autodl-tmp/out/checkpoint-1902
2
+ model_type: AutoModelForCausalLM
3
+ tokenizer_type: AutoTokenizer
4
+
5
+ #hub_model_id: anthracite-org/magnum-v4-12b-r2
6
+ #hub_strategy: "all_checkpoints"
7
+ #push_dataset_to_hub:
8
+ #hf_use_auth_token: true
9
+
10
+ plugins:
11
+ - axolotl.integrations.liger.LigerPlugin
12
+ liger_rope: true
13
+ liger_rms_norm: true
14
+ liger_swiglu: true
15
+ liger_fused_linear_cross_entropy: true
16
+
17
+ load_in_8bit: false
18
+ load_in_4bit: false
19
+ strict: false
20
+
21
+ datasets:
22
+ - path: anthracite-org/c2_logs_32k_llama3_qwen2_v1.2_no_system
23
+ type: chat_template
24
+ field_messages: conversations
25
+ message_field_role: from
26
+ message_field_content: value
27
+ - path: allenai/tulu-3-sft-mixture
28
+ type: chat_template
29
+ field_messages: messages
30
+ message_field_role: role
31
+ message_field_content: content
32
+ - path: /root/autodl-tmp/valid_records.jsonl
33
+ type: chat_template
34
+ field_messages: conversations
35
+ message_field_role: role
36
+ message_field_content: content
37
+ chat_template: chatml
38
+ shuffle_merged_datasets: true
39
+ #default_system_message: "You are an assistant that responds to the user."
40
+ dataset_prepared_path: /root/autodl-tmp/magnum-12b-data
41
+ val_set_size: 0.0
42
+ output_dir: /root/autodl-tmp/12b-fft-out
43
+
44
+ sequence_len: 32768
45
+ sample_packing: true
46
+ pad_to_sequence_len: true
47
+
48
+ adapter:
49
+ lora_model_dir:
50
+ lora_r:
51
+ lora_alpha:
52
+ lora_dropout:
53
+ lora_target_linear:
54
+ lora_fan_in_fan_out:
55
+
56
+ wandb_project: 12b-magnum-fft
57
+ wandb_entity:
58
+ wandb_watch:
59
+ wandb_name: v4-r2-attempt-01
60
+ wandb_log_model:
61
+
62
+ gradient_accumulation_steps: 16
63
+ micro_batch_size: 1
64
+ num_epochs: 3
65
+ optimizer: adamw_torch
66
+ lr_scheduler: cosine
67
+ learning_rate: 5e-6
68
+
69
+ train_on_inputs: false
70
+ group_by_length: false
71
+ bf16: auto
72
+ fp16:
73
+ tf32: false
74
+
75
+ gradient_checkpointing: true
76
+ early_stopping_patience:
77
+ resume_from_checkpoint:
78
+ local_rank:
79
+ logging_steps: 1
80
+ xformers_attention:
81
+ flash_attention: true
82
+
83
+ warmup_steps: 100
84
+ evals_per_epoch:
85
+ eval_table_size:
86
+ eval_max_new_tokens:
87
+ saves_per_epoch: 2
88
+ debug:
89
+ deepspeed: /root/autodl-tmp/zero2.json
90
+ weight_decay: 0.1
91
+ fsdp:
92
+ fsdp_config:
93
+ special_tokens:
94
+ eos_token: "<|im_end|>"
95
+ pad_token: "<pad>"
96
+ bos_token: "<s>"
97
+ unk_token: "<unk>"
98
+ tokens:
99
+ - "<|im_start|>"
data/.ipynb_checkpoints/nemo-checkpoint.yml ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ base_model: /root/autodl-tmp/SillyTilly/mistralai_Mistral-Nemo-Base-2407
2
+ model_type: AutoModelForCausalLM
3
+ tokenizer_type: AutoTokenizer
4
+
5
+ #hub_model_id: taozi555/hiwaifu-12b
6
+ #hub_strategy: "all_checkpoints"
7
+ #push_dataset_to_hub:
8
+ #hf_use_auth_token: true
9
+
10
+ plugins:
11
+ - axolotl.integrations.liger.LigerPlugin
12
+ liger_rope: true
13
+ liger_rms_norm: true
14
+ liger_swiglu: true
15
+ liger_fused_linear_cross_entropy: true
16
+
17
+ load_in_8bit: false
18
+ load_in_4bit: false
19
+ strict: false
20
+ max_steps: 5000
21
+
22
+ save_total_limit: 5
23
+ pretraining_dataset:
24
+ - path: taozi555/novel_text
25
+ name: default
26
+ type: pretrain
27
+ - path: ToastyPigeon/SpringDragon
28
+ type: pretrain
29
+ - path: allura-org/sugarquill-10k
30
+ type: pretrain
31
+ - path: allura-org/fujin-cleaned-stage-2
32
+ type: pretrain
33
+
34
+ shuffle_merged_datasets: true
35
+ #default_system_message: "You are an assistant that responds to the user."
36
+ dataset_prepared_path: /root/autodl-tmp/data/
37
+ val_set_size: 0.0
38
+ output_dir: /root/autodl-tmp/hiwaifu-12b-Instruct/
39
+
40
+ sequence_len: 32768
41
+ sample_packing: true
42
+ pad_to_sequence_len: true
43
+
44
+ adapter:
45
+ lora_model_dir:
46
+ lora_r:
47
+ lora_alpha:
48
+ lora_dropout:
49
+ lora_target_linear:
50
+ lora_fan_in_fan_out:
51
+
52
+
53
+ wandb_project: hiwaifu-12b
54
+ wandb_entity:
55
+ wandb_watch:
56
+ wandb_name: hiwaifu-12b-pretrain
57
+ wandb_log_model:
58
+
59
+ gradient_accumulation_steps: 2
60
+ micro_batch_size: 1
61
+ num_epochs: 3
62
+ optimizer: paged_adamw_8bit
63
+ warmup_ratio: 0.05
64
+ learning_rate: 0.0002
65
+ lr_scheduler: cosine
66
+
67
+
68
+ train_on_inputs: false
69
+ group_by_length: false
70
+ bf16: auto
71
+ fp16:
72
+ tf32: false
73
+
74
+ gradient_checkpointing: true
75
+ early_stopping_patience:
76
+ resume_from_checkpoint:
77
+ local_rank:
78
+ logging_steps: 1
79
+ xformers_attention:
80
+ flash_attention: true
81
+
82
+ ## Evaluation
83
+ val_set_size: 0.0
84
+ #evals_per_epoch: 4
85
+ eval_table_size:
86
+ #eval_max_new_tokens: 128
87
+ saves_per_epoch: 2
88
+ debug:
89
+ deepspeed: /root/autodl-tmp/zero2.json
90
+ weight_decay: 0.1
91
+ fsdp:
92
+ fsdp_config:
93
+ special_tokens:
94
+ pad_token: <pad>
data/.ipynb_checkpoints/pre_train-checkpoint.yml ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ base_model: /root/autodl-tmp/SillyTilly/mistralai_Mistral-Nemo-Base-2407
2
+ model_type: AutoModelForCausalLM
3
+ tokenizer_type: AutoTokenizer
4
+
5
+
6
+
7
+ plugins:
8
+ - axolotl.integrations.liger.LigerPlugin
9
+ liger_rope: true
10
+ liger_rms_norm: true
11
+ liger_swiglu: true
12
+ liger_fused_linear_cross_entropy: true
13
+
14
+ load_in_8bit: false
15
+ load_in_4bit: false
16
+ strict: false
17
+
18
+ datasets:
19
+ - path: taozi555/novel_text
20
+ name: default
21
+ type: completion
22
+ - path: ToastyPigeon/SpringDragon
23
+ type: completion
24
+ - path: allura-org/sugarquill-10k
25
+ type: completion
26
+ - path: allura-org/fujin-cleaned-stage-2
27
+ type: completion
28
+ #chat_template: chatml
29
+ shuffle_merged_datasets: true
30
+ #default_system_message: "You are an assistant that responds to the user."
31
+ dataset_prepared_path: /root/autodl-tmp/magnum-12b-data
32
+ val_set_size: 0.0
33
+ output_dir: /root/autodl-tmp/out
34
+
35
+ sequence_len: 32768
36
+ sample_packing: true
37
+ pad_to_sequence_len: true
38
+
39
+ adapter:
40
+ lora_model_dir:
41
+ lora_r:
42
+ lora_alpha:
43
+ lora_dropout:
44
+ lora_target_linear:
45
+ lora_fan_in_fan_out:
46
+
47
+ wandb_project: 12b-magnum-fft
48
+ wandb_entity:
49
+ wandb_watch:
50
+ wandb_name: v4-r2-attempt-01
51
+ wandb_log_model:
52
+
53
+ gradient_accumulation_steps: 2
54
+ micro_batch_size: 1
55
+ num_epochs: 2
56
+ optimizer: adamw_torch
57
+ lr_scheduler: cosine
58
+ learning_rate: 0.00003
59
+
60
+ train_on_inputs: false
61
+ group_by_length: false
62
+ bf16: auto
63
+ fp16:
64
+ tf32: false
65
+
66
+ gradient_checkpointing: true
67
+ early_stopping_patience:
68
+ resume_from_checkpoint:
69
+ local_rank:
70
+ logging_steps: 1
71
+ xformers_attention:
72
+ flash_attention: true
73
+
74
+ warmup_steps: 40
75
+ evals_per_epoch:
76
+ eval_table_size:
77
+ eval_max_new_tokens:
78
+ saves_per_epoch: 2
79
+ debug:
80
+ deepspeed: /root/autodl-tmp/zero2.json
81
+ weight_decay: 0.1
82
+ fsdp:
83
+ fsdp_config:
84
+ special_tokens:
85
+ pad_token: <pad>
86
+
data/.ipynb_checkpoints/test-checkpoint.py ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import AutoTokenizer
2
+ tokenizer = AutoTokenizer.from_pretrained("MarsupialAI/Monstral-123B-v2")
3
+
4
+ chat = [
5
+ {"role": "system", "content": "3525265246346?"},
6
+ {"role": "user", "content": "Hello, how are you?I'm doing great. How can I help you today?I'm doing great. How can I help you today?I'm doing great. How can I help you today?I'm doing great. How can I help you today?I'm doing great. How can I help you today?"},
7
+ {"role": "assistant", "content": "I'm doing great. How can I help you today?"},
8
+ {"role": "user", "content": "I'd like to show off how chat templating works!"},
9
+ ]
10
+ print(tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True))
11
+ def apply_chat_template_with_length_limit(tokenizer, conversations, max_length, chat_template=None):
12
+ """
13
+ Apply a chat template with a length limit.
14
+
15
+ Parameters:
16
+ - tokenizer: The tokenizer object that provides the apply_chat_template method.
17
+ - conversations: List of messages to include in the chat.
18
+ - max_length: Maximum token length allowed.
19
+ - chat_template: Optional custom chat template.
20
+
21
+ Returns:
22
+ - A string containing the chat template filled with valid messages.
23
+ """
24
+ # 确保至少有一条消息
25
+ if not conversations:
26
+ return ""
27
+
28
+ # 保留第一条消息
29
+ first_msg = conversations[0]
30
+ remaining_msgs = conversations[1:]
31
+
32
+ valid_conv = []
33
+
34
+ # 计算模板和第一条消息需要的token数
35
+ template_tokens = len(tokenizer.apply_chat_template([first_msg], chat_template=chat_template))
36
+ if template_tokens <= max_length:
37
+ valid_conv.append(first_msg)
38
+ remaining_length = max_length - template_tokens
39
+ else:
40
+ # 第一条消息超出限制,跳过
41
+ remaining_length = max_length
42
+
43
+ # 从旧到新逐条添加消息
44
+ for message in remaining_msgs:
45
+ # 临时添加当前消息
46
+ temp_conv = valid_conv + [message]
47
+ tokens = tokenizer.apply_chat_template(temp_conv, chat_template=chat_template)
48
+
49
+ # 检查添加这条消息后是否超长
50
+ if len(tokens) <= max_length:
51
+ valid_conv = temp_conv
52
+ remaining_length -= len(tokens) - (
53
+ template_tokens if len(valid_conv) == 1 else 0
54
+ )
55
+ else:
56
+ break
57
+
58
+ return tokenizer.apply_chat_template(valid_conv, tokenize=False, add_generation_prompt=True, chat_template=chat_template)
59
+
60
+
61
+ #re = apply_chat_template_with_length_limit(tokenizer,chat, 100)
62
+ #print(re)
data/ddd.py ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+
3
+ def process_conversations(input_file, invalid_output_file, valid_output_file):
4
+ """
5
+ 解析 JSONL 文件,检查 `conversations` 列表是否符合条件:
6
+ - 必须存在
7
+ - 必须为列表
8
+ - 列表长度 >= 2
9
+ 将不符合条件的记录保存到 `invalid_output_file`,
10
+ 将符合条件的记录保存到 `valid_output_file`。
11
+ """
12
+ invalid_records = [] # 用于存储无效记录
13
+ valid_records = [] # 用于存储有效记录
14
+
15
+ with open(input_file, 'r', encoding='utf-8') as infile:
16
+ for line_number, line in enumerate(infile, start=1):
17
+ try:
18
+ # 尝试解析每一行 JSON
19
+ data = json.loads(line)
20
+
21
+ # 检查 `conversations` 是否存在且为非空列表,且长度 >= 2
22
+ if isinstance(data.get("conversations"), list) and len(data["conversations"]) >= 2:
23
+ valid_records.append(data) # 符合条件的记录
24
+ else:
25
+ invalid_records.append({
26
+ "line_number": line_number,
27
+ "data": data # 不符合条件的记录
28
+ })
29
+ except json.JSONDecodeError as e:
30
+ # 捕获 JSON 格式错误
31
+ invalid_records.append({
32
+ "line_number": line_number,
33
+ "error": f"JSONDecodeError: {str(e)}",
34
+ "data": line.strip() # 原始数据
35
+ })
36
+
37
+ # 将无效记录写入到无效输出文件
38
+ with open(invalid_output_file, 'w', encoding='utf-8') as invalid_file:
39
+ json.dump(invalid_records, invalid_file, ensure_ascii=False, indent=4)
40
+
41
+ # 将符合条件的记录写入到有效输出文件
42
+ with open(valid_output_file, 'w', encoding='utf-8') as valid_file:
43
+ for record in valid_records:
44
+ valid_file.write(json.dumps(record, ensure_ascii=False) + '\n')
45
+
46
+ # 打印统计信息
47
+ print(f"总记录数: {line_number}")
48
+ print(f"有效记录数: {len(valid_records)}")
49
+ print(f"无效记录数: {len(invalid_records)}")
50
+ print(f"无效记录已保存到: {invalid_output_file}")
51
+ print(f"有效记录已保存到: {valid_output_file}")
52
+
53
+
54
+ # 示例:指定输入和输出文件路径
55
+ input_file = "model5_digg1_safe.jsonl" # 输入的 JSONL 文件路径
56
+ invalid_output_file = "invalid_records.json" # 保存无效记录的文件路径
57
+ valid_output_file = "valid_records.jsonl" # 保存有效记录的文件路径
58
+
59
+ # 运行函数
60
+ process_conversations(input_file, invalid_output_file, valid_output_file)
data/magnum.yml ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ base_model: /root/autodl-tmp/out/checkpoint-1902
2
+ model_type: AutoModelForCausalLM
3
+ tokenizer_type: AutoTokenizer
4
+
5
+ #hub_model_id: anthracite-org/magnum-v4-12b-r2
6
+ #hub_strategy: "all_checkpoints"
7
+ #push_dataset_to_hub:
8
+ #hf_use_auth_token: true
9
+
10
+ plugins:
11
+ - axolotl.integrations.liger.LigerPlugin
12
+ liger_rope: true
13
+ liger_rms_norm: true
14
+ liger_swiglu: true
15
+ liger_fused_linear_cross_entropy: true
16
+
17
+ load_in_8bit: false
18
+ load_in_4bit: false
19
+ strict: false
20
+
21
+ datasets:
22
+ - path: anthracite-org/c2_logs_32k_llama3_qwen2_v1.2_no_system
23
+ type: chat_template
24
+ field_messages: conversations
25
+ message_field_role: from
26
+ message_field_content: value
27
+ - path: allenai/tulu-3-sft-mixture
28
+ type: chat_template
29
+ field_messages: messages
30
+ message_field_role: role
31
+ message_field_content: content
32
+ - path: /root/autodl-tmp/valid_records.jsonl
33
+ type: chat_template
34
+ field_messages: conversations
35
+ message_field_role: role
36
+ message_field_content: content
37
+ chat_template: chatml
38
+ shuffle_merged_datasets: true
39
+ #default_system_message: "You are an assistant that responds to the user."
40
+ dataset_prepared_path: /root/autodl-tmp/magnum-12b-data
41
+ val_set_size: 0.0
42
+ output_dir: /root/autodl-tmp/12b-fft-out
43
+
44
+ sequence_len: 32768
45
+ sample_packing: true
46
+ pad_to_sequence_len: true
47
+
48
+ adapter:
49
+ lora_model_dir:
50
+ lora_r:
51
+ lora_alpha:
52
+ lora_dropout:
53
+ lora_target_linear:
54
+ lora_fan_in_fan_out:
55
+
56
+ wandb_project: 12b-magnum-fft
57
+ wandb_entity:
58
+ wandb_watch:
59
+ wandb_name: v4-r2-attempt-01
60
+ wandb_log_model:
61
+
62
+ gradient_accumulation_steps: 16
63
+ micro_batch_size: 1
64
+ num_epochs: 3
65
+ optimizer: adamw_torch
66
+ lr_scheduler: cosine
67
+ learning_rate: 5e-6
68
+
69
+ train_on_inputs: false
70
+ group_by_length: false
71
+ bf16: auto
72
+ fp16:
73
+ tf32: false
74
+
75
+ gradient_checkpointing: true
76
+ early_stopping_patience:
77
+ resume_from_checkpoint:
78
+ local_rank:
79
+ logging_steps: 1
80
+ xformers_attention:
81
+ flash_attention: true
82
+
83
+ warmup_steps: 100
84
+ evals_per_epoch:
85
+ eval_table_size:
86
+ eval_max_new_tokens:
87
+ saves_per_epoch: 2
88
+ debug:
89
+ deepspeed: /root/autodl-tmp/zero2.json
90
+ weight_decay: 0.1
91
+ fsdp:
92
+ fsdp_config:
93
+ special_tokens:
94
+ eos_token: "<|im_end|>"
95
+ pad_token: "<pad>"
96
+ bos_token: "<s>"
97
+ unk_token: "<unk>"
98
+ tokens:
99
+ - "<|im_start|>"
data/nemo.yml ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ base_model: /root/autodl-tmp/SillyTilly/mistralai_Mistral-Nemo-Base-2407
2
+ model_type: AutoModelForCausalLM
3
+ tokenizer_type: AutoTokenizer
4
+
5
+ #hub_model_id: taozi555/hiwaifu-12b
6
+ #hub_strategy: "all_checkpoints"
7
+ #push_dataset_to_hub:
8
+ #hf_use_auth_token: true
9
+
10
+ plugins:
11
+ - axolotl.integrations.liger.LigerPlugin
12
+ liger_rope: true
13
+ liger_rms_norm: true
14
+ liger_swiglu: true
15
+ liger_fused_linear_cross_entropy: true
16
+
17
+ load_in_8bit: false
18
+ load_in_4bit: false
19
+ strict: false
20
+ max_steps: 5000
21
+
22
+ save_total_limit: 5
23
+ pretraining_dataset:
24
+ - path: taozi555/novel_text
25
+ name: default
26
+ type: pretrain
27
+ - path: ToastyPigeon/SpringDragon
28
+ type: pretrain
29
+ - path: allura-org/sugarquill-10k
30
+ type: pretrain
31
+ - path: allura-org/fujin-cleaned-stage-2
32
+ type: pretrain
33
+
34
+ shuffle_merged_datasets: true
35
+ #default_system_message: "You are an assistant that responds to the user."
36
+ dataset_prepared_path: /root/autodl-tmp/data/
37
+ val_set_size: 0.0
38
+ output_dir: /root/autodl-tmp/hiwaifu-12b-Instruct/
39
+
40
+ sequence_len: 32768
41
+ sample_packing: true
42
+ pad_to_sequence_len: true
43
+
44
+ adapter:
45
+ lora_model_dir:
46
+ lora_r:
47
+ lora_alpha:
48
+ lora_dropout:
49
+ lora_target_linear:
50
+ lora_fan_in_fan_out:
51
+
52
+
53
+ wandb_project: hiwaifu-12b
54
+ wandb_entity:
55
+ wandb_watch:
56
+ wandb_name: hiwaifu-12b-pretrain
57
+ wandb_log_model:
58
+
59
+ gradient_accumulation_steps: 2
60
+ micro_batch_size: 1
61
+ num_epochs: 3
62
+ optimizer: paged_adamw_8bit
63
+ warmup_ratio: 0.05
64
+ learning_rate: 0.0002
65
+ lr_scheduler: cosine
66
+
67
+
68
+ train_on_inputs: false
69
+ group_by_length: false
70
+ bf16: auto
71
+ fp16:
72
+ tf32: false
73
+
74
+ gradient_checkpointing: true
75
+ early_stopping_patience:
76
+ resume_from_checkpoint:
77
+ local_rank:
78
+ logging_steps: 1
79
+ xformers_attention:
80
+ flash_attention: true
81
+
82
+ ## Evaluation
83
+ val_set_size: 0.0
84
+ #evals_per_epoch: 4
85
+ eval_table_size:
86
+ #eval_max_new_tokens: 128
87
+ saves_per_epoch: 2
88
+ debug:
89
+ deepspeed: /root/autodl-tmp/zero2.json
90
+ weight_decay: 0.1
91
+ fsdp:
92
+ fsdp_config:
93
+ special_tokens:
94
+ pad_token: <pad>
data/pre_train.yml ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ base_model: /root/autodl-tmp/SillyTilly/mistralai_Mistral-Nemo-Base-2407
2
+ model_type: AutoModelForCausalLM
3
+ tokenizer_type: AutoTokenizer
4
+
5
+
6
+
7
+ plugins:
8
+ - axolotl.integrations.liger.LigerPlugin
9
+ liger_rope: true
10
+ liger_rms_norm: true
11
+ liger_swiglu: true
12
+ liger_fused_linear_cross_entropy: true
13
+
14
+ load_in_8bit: false
15
+ load_in_4bit: false
16
+ strict: false
17
+
18
+ datasets:
19
+ - path: taozi555/novel_text
20
+ name: default
21
+ type: completion
22
+ - path: ToastyPigeon/SpringDragon
23
+ type: completion
24
+ - path: allura-org/sugarquill-10k
25
+ type: completion
26
+ - path: allura-org/fujin-cleaned-stage-2
27
+ type: completion
28
+ #chat_template: chatml
29
+ shuffle_merged_datasets: true
30
+ #default_system_message: "You are an assistant that responds to the user."
31
+ dataset_prepared_path: /root/autodl-tmp/magnum-12b-data
32
+ val_set_size: 0.0
33
+ output_dir: /root/autodl-tmp/out
34
+
35
+ sequence_len: 32768
36
+ sample_packing: true
37
+ pad_to_sequence_len: true
38
+
39
+ adapter:
40
+ lora_model_dir:
41
+ lora_r:
42
+ lora_alpha:
43
+ lora_dropout:
44
+ lora_target_linear:
45
+ lora_fan_in_fan_out:
46
+
47
+ wandb_project: 12b-magnum-fft
48
+ wandb_entity:
49
+ wandb_watch:
50
+ wandb_name: v4-r2-attempt-01
51
+ wandb_log_model:
52
+
53
+ gradient_accumulation_steps: 2
54
+ micro_batch_size: 1
55
+ num_epochs: 2
56
+ optimizer: adamw_torch
57
+ lr_scheduler: cosine
58
+ learning_rate: 0.00003
59
+
60
+ train_on_inputs: false
61
+ group_by_length: false
62
+ bf16: auto
63
+ fp16:
64
+ tf32: false
65
+
66
+ gradient_checkpointing: true
67
+ early_stopping_patience:
68
+ resume_from_checkpoint:
69
+ local_rank:
70
+ logging_steps: 1
71
+ xformers_attention:
72
+ flash_attention: true
73
+
74
+ warmup_steps: 40
75
+ evals_per_epoch:
76
+ eval_table_size:
77
+ eval_max_new_tokens:
78
+ saves_per_epoch: 2
79
+ debug:
80
+ deepspeed: /root/autodl-tmp/zero2.json
81
+ weight_decay: 0.1
82
+ fsdp:
83
+ fsdp_config:
84
+ special_tokens:
85
+ pad_token: <pad>
86
+
data/test.py ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import AutoTokenizer
2
+ tokenizer = AutoTokenizer.from_pretrained("MarsupialAI/Monstral-123B-v2")
3
+
4
+ chat = [
5
+ {"role": "system", "content": "3525265246346?"},
6
+ {"role": "user", "content": "Hello, how are you?I'm doing great. How can I help you today?I'm doing great. How can I help you today?I'm doing great. How can I help you today?I'm doing great. How can I help you today?I'm doing great. How can I help you today?"},
7
+ {"role": "assistant", "content": "I'm doing great. How can I help you today?"},
8
+ {"role": "user", "content": "I'd like to show off how chat templating works!"},
9
+ ]
10
+ print(tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True))
11
+ def apply_chat_template_with_length_limit(tokenizer, conversations, max_length, chat_template=None):
12
+ """
13
+ Apply a chat template with a length limit.
14
+
15
+ Parameters:
16
+ - tokenizer: The tokenizer object that provides the apply_chat_template method.
17
+ - conversations: List of messages to include in the chat.
18
+ - max_length: Maximum token length allowed.
19
+ - chat_template: Optional custom chat template.
20
+
21
+ Returns:
22
+ - A string containing the chat template filled with valid messages.
23
+ """
24
+ # 确保至少有一条消息
25
+ if not conversations:
26
+ return ""
27
+
28
+ # 保留第一条消息
29
+ first_msg = conversations[0]
30
+ remaining_msgs = conversations[1:]
31
+
32
+ valid_conv = []
33
+
34
+ # 计算模板和第一条消息需要的token数
35
+ template_tokens = len(tokenizer.apply_chat_template([first_msg], chat_template=chat_template))
36
+ if template_tokens <= max_length:
37
+ valid_conv.append(first_msg)
38
+ remaining_length = max_length - template_tokens
39
+ else:
40
+ # 第一条消息超出限制,跳过
41
+ remaining_length = max_length
42
+
43
+ # 从旧到新逐条添加消息
44
+ for message in remaining_msgs:
45
+ # 临时添加当前消息
46
+ temp_conv = valid_conv + [message]
47
+ tokens = tokenizer.apply_chat_template(temp_conv, chat_template=chat_template)
48
+
49
+ # 检查添加这条消息后是否超长
50
+ if len(tokens) <= max_length:
51
+ valid_conv = temp_conv
52
+ remaining_length -= len(tokens) - (
53
+ template_tokens if len(valid_conv) == 1 else 0
54
+ )
55
+ else:
56
+ break
57
+
58
+ return tokenizer.apply_chat_template(valid_conv, tokenize=False, add_generation_prompt=True, chat_template=chat_template)
59
+
60
+
61
+ #re = apply_chat_template_with_length_limit(tokenizer,chat, 100)
62
+ #print(re)
data/valid_records.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ef0698d000526d8a238cedcdfa5092f43ee31c2976861117b5cd465d0dc1ba88
3
+ size 41322927
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "do_sample": true,
5
+ "eos_token_id": 2,
6
+ "transformers_version": "4.46.3"
7
+ }
global_step606/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:34a2875a1c9d30be6da8791d4380ef7cc97a0be85c7259c5f2ca28a1981c1faa
3
+ size 18371710396
global_step606/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8bf3034c1f15857cc6cd15d7965a888158c482292a3076ebcf9fb1edd037e203
3
+ size 18371711548
global_step606/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dc9bab8bb1e61a2bc0beb4d50cad2e40fe956e97a02917aa065bdf0eafca96bf
3
+ size 18371711932
global_step606/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:00a21111d45b585811e3d27ec70bfbebee3881ea60b522624036c438cf69ae31
3
+ size 18371711804
global_step606/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:104a535a31421aaae88df21c7cf00de65adc9cc1118ea559d882a036bd2e9479
3
+ size 18371711804
global_step606/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8646d6dd853e43fb074a2827f9b48db56fb083cd4bf3ca7c1d8accf6ba758dfd
3
+ size 18371711996
global_step606/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:918e3808df51c1f22039569ab4df28aad441ed2aa3fa4f40bd3795cc9528e129
3
+ size 18371711548
global_step606/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7d55a0eeccd46f8ef08e0b851f55a903450983c64d5e753d6cca4b5237a45092
3
+ size 18371710396
global_step606/mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:037af0cca9be97493a5dfa24c1a4cf187f9e9ad4710ff6330eab6a86db8676b9
3
+ size 24495713376
latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step606
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00005.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9b3f67a872b0a5d198193931800612db887515fd2561f3e6e90c3441ac2fc75f
3
+ size 4865542976
model-00002-of-00005.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:144c2391fa83ab92cf146074e0024f9eca0d014a08828fd207922f6d2dcca2b7
3
+ size 4907529424
model-00003-of-00005.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aecad88cd17f6c308ee9d84a5e13fee41da47f123a13cd67cc6e8308d381ad3f
3
+ size 4907529456
model-00004-of-00005.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7b1de290f88da1be8bd9343a13f7eaaca3fbe4a7027d33181080b54936dab300
3
+ size 4907529456
model-00005-of-00005.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4572007c76a2fc23620b41b03c08e6c254e4c560891c80b17be7271a1a4ce516
3
+ size 4907516752
model.safetensors.index.json ADDED
@@ -0,0 +1,370 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 24495605760
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00005-of-00005.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00005.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00005.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
15
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
16
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
17
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00005.safetensors",
18
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
19
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
20
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
21
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
22
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
23
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
24
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
25
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
26
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00005.safetensors",
27
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
28
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
29
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
30
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
31
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
32
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
33
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
34
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
35
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00005.safetensors",
36
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
37
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
38
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
39
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
40
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
41
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
42
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
43
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
44
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00005.safetensors",
45
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
46
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
47
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
48
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
49
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
50
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
51
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
52
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
53
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00005.safetensors",
54
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
55
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
56
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
57
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
58
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
59
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
60
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
61
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
62
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00005.safetensors",
63
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
64
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
65
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
66
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
67
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
68
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
69
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
70
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
71
+ "model.layers.15.input_layernorm.weight": "model-00003-of-00005.safetensors",
72
+ "model.layers.15.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
73
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
74
+ "model.layers.15.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
75
+ "model.layers.15.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
76
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
77
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
78
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
79
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
80
+ "model.layers.16.input_layernorm.weight": "model-00003-of-00005.safetensors",
81
+ "model.layers.16.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
82
+ "model.layers.16.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
83
+ "model.layers.16.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
84
+ "model.layers.16.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
85
+ "model.layers.16.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
86
+ "model.layers.16.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
87
+ "model.layers.16.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
88
+ "model.layers.16.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
89
+ "model.layers.17.input_layernorm.weight": "model-00003-of-00005.safetensors",
90
+ "model.layers.17.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
91
+ "model.layers.17.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
92
+ "model.layers.17.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
93
+ "model.layers.17.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
94
+ "model.layers.17.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
95
+ "model.layers.17.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
96
+ "model.layers.17.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
97
+ "model.layers.17.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
98
+ "model.layers.18.input_layernorm.weight": "model-00003-of-00005.safetensors",
99
+ "model.layers.18.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
100
+ "model.layers.18.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
101
+ "model.layers.18.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
102
+ "model.layers.18.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
103
+ "model.layers.18.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
104
+ "model.layers.18.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
105
+ "model.layers.18.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
106
+ "model.layers.18.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
107
+ "model.layers.19.input_layernorm.weight": "model-00003-of-00005.safetensors",
108
+ "model.layers.19.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
109
+ "model.layers.19.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
110
+ "model.layers.19.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
111
+ "model.layers.19.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
112
+ "model.layers.19.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
113
+ "model.layers.19.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
114
+ "model.layers.19.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
115
+ "model.layers.19.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
116
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00005.safetensors",
117
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
118
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
119
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
120
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
121
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
122
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
123
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
124
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
125
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00005.safetensors",
126
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
127
+ "model.layers.20.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
128
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
129
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
130
+ "model.layers.20.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
131
+ "model.layers.20.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
132
+ "model.layers.20.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
133
+ "model.layers.20.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
134
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00005.safetensors",
135
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
136
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
137
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
138
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
139
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
140
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
141
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
142
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
143
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00005.safetensors",
144
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
145
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
146
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
147
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
148
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
149
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
150
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
151
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
152
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00005.safetensors",
153
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
154
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
155
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
156
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
157
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
158
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
159
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
160
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
161
+ "model.layers.24.input_layernorm.weight": "model-00004-of-00005.safetensors",
162
+ "model.layers.24.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
163
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
164
+ "model.layers.24.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
165
+ "model.layers.24.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
166
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
167
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
168
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
169
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
170
+ "model.layers.25.input_layernorm.weight": "model-00004-of-00005.safetensors",
171
+ "model.layers.25.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
172
+ "model.layers.25.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
173
+ "model.layers.25.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
174
+ "model.layers.25.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
175
+ "model.layers.25.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
176
+ "model.layers.25.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
177
+ "model.layers.25.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
178
+ "model.layers.25.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
179
+ "model.layers.26.input_layernorm.weight": "model-00004-of-00005.safetensors",
180
+ "model.layers.26.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
181
+ "model.layers.26.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
182
+ "model.layers.26.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
183
+ "model.layers.26.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
184
+ "model.layers.26.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
185
+ "model.layers.26.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
186
+ "model.layers.26.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
187
+ "model.layers.26.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
188
+ "model.layers.27.input_layernorm.weight": "model-00004-of-00005.safetensors",
189
+ "model.layers.27.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
190
+ "model.layers.27.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
191
+ "model.layers.27.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
192
+ "model.layers.27.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
193
+ "model.layers.27.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
194
+ "model.layers.27.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
195
+ "model.layers.27.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
196
+ "model.layers.27.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
197
+ "model.layers.28.input_layernorm.weight": "model-00004-of-00005.safetensors",
198
+ "model.layers.28.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
199
+ "model.layers.28.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
200
+ "model.layers.28.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
201
+ "model.layers.28.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
202
+ "model.layers.28.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
203
+ "model.layers.28.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
204
+ "model.layers.28.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
205
+ "model.layers.28.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
206
+ "model.layers.29.input_layernorm.weight": "model-00004-of-00005.safetensors",
207
+ "model.layers.29.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
208
+ "model.layers.29.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
209
+ "model.layers.29.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
210
+ "model.layers.29.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
211
+ "model.layers.29.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
212
+ "model.layers.29.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
213
+ "model.layers.29.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
214
+ "model.layers.29.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
215
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00005.safetensors",
216
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
217
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
218
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
219
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
220
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
221
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
222
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
223
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
224
+ "model.layers.30.input_layernorm.weight": "model-00004-of-00005.safetensors",
225
+ "model.layers.30.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
226
+ "model.layers.30.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
227
+ "model.layers.30.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
228
+ "model.layers.30.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
229
+ "model.layers.30.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
230
+ "model.layers.30.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
231
+ "model.layers.30.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
232
+ "model.layers.30.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
233
+ "model.layers.31.input_layernorm.weight": "model-00004-of-00005.safetensors",
234
+ "model.layers.31.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
235
+ "model.layers.31.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
236
+ "model.layers.31.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
237
+ "model.layers.31.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
238
+ "model.layers.31.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
239
+ "model.layers.31.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
240
+ "model.layers.31.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
241
+ "model.layers.31.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
242
+ "model.layers.32.input_layernorm.weight": "model-00004-of-00005.safetensors",
243
+ "model.layers.32.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
244
+ "model.layers.32.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
245
+ "model.layers.32.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
246
+ "model.layers.32.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
247
+ "model.layers.32.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
248
+ "model.layers.32.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
249
+ "model.layers.32.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
250
+ "model.layers.32.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
251
+ "model.layers.33.input_layernorm.weight": "model-00005-of-00005.safetensors",
252
+ "model.layers.33.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
253
+ "model.layers.33.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
254
+ "model.layers.33.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
255
+ "model.layers.33.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
256
+ "model.layers.33.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
257
+ "model.layers.33.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
258
+ "model.layers.33.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
259
+ "model.layers.33.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
260
+ "model.layers.34.input_layernorm.weight": "model-00005-of-00005.safetensors",
261
+ "model.layers.34.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
262
+ "model.layers.34.mlp.gate_proj.weight": "model-00005-of-00005.safetensors",
263
+ "model.layers.34.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
264
+ "model.layers.34.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
265
+ "model.layers.34.self_attn.k_proj.weight": "model-00005-of-00005.safetensors",
266
+ "model.layers.34.self_attn.o_proj.weight": "model-00005-of-00005.safetensors",
267
+ "model.layers.34.self_attn.q_proj.weight": "model-00005-of-00005.safetensors",
268
+ "model.layers.34.self_attn.v_proj.weight": "model-00005-of-00005.safetensors",
269
+ "model.layers.35.input_layernorm.weight": "model-00005-of-00005.safetensors",
270
+ "model.layers.35.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
271
+ "model.layers.35.mlp.gate_proj.weight": "model-00005-of-00005.safetensors",
272
+ "model.layers.35.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
273
+ "model.layers.35.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
274
+ "model.layers.35.self_attn.k_proj.weight": "model-00005-of-00005.safetensors",
275
+ "model.layers.35.self_attn.o_proj.weight": "model-00005-of-00005.safetensors",
276
+ "model.layers.35.self_attn.q_proj.weight": "model-00005-of-00005.safetensors",
277
+ "model.layers.35.self_attn.v_proj.weight": "model-00005-of-00005.safetensors",
278
+ "model.layers.36.input_layernorm.weight": "model-00005-of-00005.safetensors",
279
+ "model.layers.36.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
280
+ "model.layers.36.mlp.gate_proj.weight": "model-00005-of-00005.safetensors",
281
+ "model.layers.36.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
282
+ "model.layers.36.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
283
+ "model.layers.36.self_attn.k_proj.weight": "model-00005-of-00005.safetensors",
284
+ "model.layers.36.self_attn.o_proj.weight": "model-00005-of-00005.safetensors",
285
+ "model.layers.36.self_attn.q_proj.weight": "model-00005-of-00005.safetensors",
286
+ "model.layers.36.self_attn.v_proj.weight": "model-00005-of-00005.safetensors",
287
+ "model.layers.37.input_layernorm.weight": "model-00005-of-00005.safetensors",
288
+ "model.layers.37.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
289
+ "model.layers.37.mlp.gate_proj.weight": "model-00005-of-00005.safetensors",
290
+ "model.layers.37.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
291
+ "model.layers.37.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
292
+ "model.layers.37.self_attn.k_proj.weight": "model-00005-of-00005.safetensors",
293
+ "model.layers.37.self_attn.o_proj.weight": "model-00005-of-00005.safetensors",
294
+ "model.layers.37.self_attn.q_proj.weight": "model-00005-of-00005.safetensors",
295
+ "model.layers.37.self_attn.v_proj.weight": "model-00005-of-00005.safetensors",
296
+ "model.layers.38.input_layernorm.weight": "model-00005-of-00005.safetensors",
297
+ "model.layers.38.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
298
+ "model.layers.38.mlp.gate_proj.weight": "model-00005-of-00005.safetensors",
299
+ "model.layers.38.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
300
+ "model.layers.38.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
301
+ "model.layers.38.self_attn.k_proj.weight": "model-00005-of-00005.safetensors",
302
+ "model.layers.38.self_attn.o_proj.weight": "model-00005-of-00005.safetensors",
303
+ "model.layers.38.self_attn.q_proj.weight": "model-00005-of-00005.safetensors",
304
+ "model.layers.38.self_attn.v_proj.weight": "model-00005-of-00005.safetensors",
305
+ "model.layers.39.input_layernorm.weight": "model-00005-of-00005.safetensors",
306
+ "model.layers.39.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
307
+ "model.layers.39.mlp.gate_proj.weight": "model-00005-of-00005.safetensors",
308
+ "model.layers.39.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
309
+ "model.layers.39.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
310
+ "model.layers.39.self_attn.k_proj.weight": "model-00005-of-00005.safetensors",
311
+ "model.layers.39.self_attn.o_proj.weight": "model-00005-of-00005.safetensors",
312
+ "model.layers.39.self_attn.q_proj.weight": "model-00005-of-00005.safetensors",
313
+ "model.layers.39.self_attn.v_proj.weight": "model-00005-of-00005.safetensors",
314
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00005.safetensors",
315
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
316
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
317
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
318
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
319
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
320
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
321
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
322
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
323
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00005.safetensors",
324
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
325
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
326
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
327
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
328
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
329
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
330
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
331
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
332
+ "model.layers.6.input_layernorm.weight": "model-00002-of-00005.safetensors",
333
+ "model.layers.6.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
334
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
335
+ "model.layers.6.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
336
+ "model.layers.6.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
337
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
338
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
339
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
340
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
341
+ "model.layers.7.input_layernorm.weight": "model-00002-of-00005.safetensors",
342
+ "model.layers.7.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
343
+ "model.layers.7.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
344
+ "model.layers.7.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
345
+ "model.layers.7.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
346
+ "model.layers.7.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
347
+ "model.layers.7.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
348
+ "model.layers.7.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
349
+ "model.layers.7.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
350
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00005.safetensors",
351
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
352
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
353
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
354
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
355
+ "model.layers.8.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
356
+ "model.layers.8.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
357
+ "model.layers.8.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
358
+ "model.layers.8.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
359
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00005.safetensors",
360
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
361
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
362
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
363
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
364
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
365
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
366
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
367
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
368
+ "model.norm.weight": "model-00005-of-00005.safetensors"
369
+ }
370
+ }
rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:08282b46825aa78d10fe10e3fea89555c5b5a691b261a3ddfd58fcb58370edff
3
+ size 15984
rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dbab71d98a3a9a92df82a6bba463947327c3a1bcf35cd9f4f46114641fc42dd9
3
+ size 15984
rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:caac82d57d878d30219a4f9ec289a97ff90c53afc160b968f251b3fd3454b8d8
3
+ size 15984
rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:19762d2d370222b01817da11bbaa6665d542293373186d66f754e7246bb861ed
3
+ size 15984
rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:00c7508b346a7d3c5c23392845f1d013331114ade778794b76e919cb3ed5d33e
3
+ size 15984
rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b89de7d14dd20a191f56b74c816ef8b7fe5c171e31efbeadbf321c4539ed68c3
3
+ size 15984
rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1c71152053553e6e22d670fbc4fd7550bf8a046b54cad7b71869787986a6a42c
3
+ size 15984
rng_state_7.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4b67db12a26a26ffe03d9afc84a43857eb2e5b2fec2dd189653b415f74208190
3
+ size 15984
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c130e41a1b4eae087a7ebe532bd523aa54ceca439537c8584456f337c4a466ab
3
+ size 1064
special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|im_end|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<pad>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<unk>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c367da14a113b5c624ba0fc049b60223b2db35b6923b210ddc994d4b58e9be9d
3
+ size 17078969
tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e3fa17a5b21d43c1c0966c733ead377ee61a3f30c19bb3f50f59340e90cf2915
3
+ size 8376
vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
zero_to_fp32.py ADDED
@@ -0,0 +1,760 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import gc
25
+ import json
26
+ import numpy as np
27
+ from tqdm import tqdm
28
+ from collections import OrderedDict
29
+ from dataclasses import dataclass
30
+
31
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
32
+ # DeepSpeed data structures it has to be available in the current python environment.
33
+ from deepspeed.utils import logger
34
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
35
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
36
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
37
+
38
+
39
+ @dataclass
40
+ class zero_model_state:
41
+ buffers: dict()
42
+ param_shapes: dict()
43
+ shared_params: list
44
+ ds_version: int
45
+ frozen_param_shapes: dict()
46
+ frozen_param_fragments: dict()
47
+
48
+
49
+ debug = 0
50
+
51
+ # load to cpu
52
+ device = torch.device('cpu')
53
+
54
+
55
+ def atoi(text):
56
+ return int(text) if text.isdigit() else text
57
+
58
+
59
+ def natural_keys(text):
60
+ '''
61
+ alist.sort(key=natural_keys) sorts in human order
62
+ http://nedbatchelder.com/blog/200712/human_sorting.html
63
+ (See Toothy's implementation in the comments)
64
+ '''
65
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
66
+
67
+
68
+ def get_model_state_file(checkpoint_dir, zero_stage):
69
+ if not os.path.isdir(checkpoint_dir):
70
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
71
+
72
+ # there should be only one file
73
+ if zero_stage <= 2:
74
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
75
+ elif zero_stage == 3:
76
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
77
+
78
+ if not os.path.exists(file):
79
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
80
+
81
+ return file
82
+
83
+
84
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
85
+ # XXX: need to test that this simple glob rule works for multi-node setup too
86
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
87
+
88
+ if len(ckpt_files) == 0:
89
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
90
+
91
+ return ckpt_files
92
+
93
+
94
+ def get_optim_files(checkpoint_dir):
95
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
96
+
97
+
98
+ def get_model_state_files(checkpoint_dir):
99
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
100
+
101
+
102
+ def parse_model_states(files):
103
+ zero_model_states = []
104
+ for file in files:
105
+ state_dict = torch.load(file, map_location=device, weights_only=False)
106
+
107
+ if BUFFER_NAMES not in state_dict:
108
+ raise ValueError(f"{file} is not a model state checkpoint")
109
+ buffer_names = state_dict[BUFFER_NAMES]
110
+ if debug:
111
+ print("Found buffers:", buffer_names)
112
+
113
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
114
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
115
+ param_shapes = state_dict[PARAM_SHAPES]
116
+
117
+ # collect parameters that are included in param_shapes
118
+ param_names = []
119
+ for s in param_shapes:
120
+ for name in s.keys():
121
+ param_names.append(name)
122
+
123
+ # update with frozen parameters
124
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
125
+ if frozen_param_shapes is not None:
126
+ if debug:
127
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
128
+ param_names += list(frozen_param_shapes.keys())
129
+
130
+ # handle shared params
131
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
132
+
133
+ ds_version = state_dict.get(DS_VERSION, None)
134
+
135
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
136
+
137
+ z_model_state = zero_model_state(buffers=buffers,
138
+ param_shapes=param_shapes,
139
+ shared_params=shared_params,
140
+ ds_version=ds_version,
141
+ frozen_param_shapes=frozen_param_shapes,
142
+ frozen_param_fragments=frozen_param_fragments)
143
+ zero_model_states.append(z_model_state)
144
+
145
+ return zero_model_states
146
+
147
+
148
+ def parse_optim_states(files, ds_checkpoint_dir):
149
+ total_files = len(files)
150
+ state_dicts = []
151
+ for f in tqdm(files, desc='Loading checkpoint shards'):
152
+ state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
153
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
154
+ # and also handle the case where it was already removed by another helper script
155
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
156
+ state_dicts.append(state_dict)
157
+
158
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
159
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
160
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
161
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
162
+
163
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
164
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
165
+ # use the max of the partition_count to get the dp world_size.
166
+
167
+ if type(world_size) is list:
168
+ world_size = max(world_size)
169
+
170
+ if world_size != total_files:
171
+ raise ValueError(
172
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
173
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
174
+ )
175
+
176
+ # the groups are named differently in each stage
177
+ if zero_stage <= 2:
178
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
179
+ elif zero_stage == 3:
180
+ fp32_groups_key = FP32_FLAT_GROUPS
181
+ else:
182
+ raise ValueError(f"unknown zero stage {zero_stage}")
183
+
184
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
185
+ return zero_stage, world_size, fp32_flat_groups
186
+
187
+
188
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
189
+ """
190
+ Returns fp32 state_dict reconstructed from ds checkpoint
191
+
192
+ Args:
193
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
194
+
195
+ """
196
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
197
+
198
+ optim_files = get_optim_files(ds_checkpoint_dir)
199
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
200
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
201
+
202
+ model_files = get_model_state_files(ds_checkpoint_dir)
203
+
204
+ zero_model_states = parse_model_states(model_files)
205
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
206
+
207
+ if zero_stage <= 2:
208
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
209
+ exclude_frozen_parameters)
210
+ elif zero_stage == 3:
211
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
212
+ exclude_frozen_parameters)
213
+
214
+
215
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
216
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
217
+ return
218
+
219
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
220
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
221
+
222
+ if debug:
223
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
224
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
225
+
226
+ wanted_params = len(frozen_param_shapes)
227
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
228
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
229
+ print(f'Frozen params: Have {avail_numel} numels to process.')
230
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
231
+
232
+ total_params = 0
233
+ total_numel = 0
234
+ for name, shape in frozen_param_shapes.items():
235
+ total_params += 1
236
+ unpartitioned_numel = shape.numel()
237
+ total_numel += unpartitioned_numel
238
+
239
+ state_dict[name] = frozen_param_fragments[name]
240
+
241
+ if debug:
242
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
243
+
244
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
245
+
246
+
247
+ def _has_callable(obj, fn):
248
+ attr = getattr(obj, fn, None)
249
+ return callable(attr)
250
+
251
+
252
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
253
+ param_shapes = zero_model_states[0].param_shapes
254
+
255
+ # Reconstruction protocol:
256
+ #
257
+ # XXX: document this
258
+
259
+ if debug:
260
+ for i in range(world_size):
261
+ for j in range(len(fp32_flat_groups[0])):
262
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
263
+
264
+ # XXX: memory usage doubles here (zero2)
265
+ num_param_groups = len(fp32_flat_groups[0])
266
+ merged_single_partition_of_fp32_groups = []
267
+ for i in range(num_param_groups):
268
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
269
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
270
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
271
+ avail_numel = sum(
272
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
273
+
274
+ if debug:
275
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
276
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
277
+ # not asserting if there is a mismatch due to possible padding
278
+ print(f"Have {avail_numel} numels to process.")
279
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
280
+
281
+ # params
282
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
283
+ # out-of-core computing solution
284
+ total_numel = 0
285
+ total_params = 0
286
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
287
+ offset = 0
288
+ avail_numel = full_single_fp32_vector.numel()
289
+ for name, shape in shapes.items():
290
+
291
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
292
+ total_numel += unpartitioned_numel
293
+ total_params += 1
294
+
295
+ if debug:
296
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
297
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
298
+ offset += unpartitioned_numel
299
+
300
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
301
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
302
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
303
+ # live optimizer object, so we are checking that the numbers are within the right range
304
+ align_to = 2 * world_size
305
+
306
+ def zero2_align(x):
307
+ return align_to * math.ceil(x / align_to)
308
+
309
+ if debug:
310
+ print(f"original offset={offset}, avail_numel={avail_numel}")
311
+
312
+ offset = zero2_align(offset)
313
+ avail_numel = zero2_align(avail_numel)
314
+
315
+ if debug:
316
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
317
+
318
+ # Sanity check
319
+ if offset != avail_numel:
320
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
321
+
322
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
323
+
324
+
325
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
326
+ exclude_frozen_parameters):
327
+ state_dict = OrderedDict()
328
+
329
+ # buffers
330
+ buffers = zero_model_states[0].buffers
331
+ state_dict.update(buffers)
332
+ if debug:
333
+ print(f"added {len(buffers)} buffers")
334
+
335
+ if not exclude_frozen_parameters:
336
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
337
+
338
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
339
+
340
+ # recover shared parameters
341
+ for pair in zero_model_states[0].shared_params:
342
+ if pair[1] in state_dict:
343
+ state_dict[pair[0]] = state_dict[pair[1]]
344
+
345
+ return state_dict
346
+
347
+
348
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
349
+ remainder = unpartitioned_numel % world_size
350
+ padding_numel = (world_size - remainder) if remainder else 0
351
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
352
+ return partitioned_numel, padding_numel
353
+
354
+
355
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
356
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
357
+ return
358
+
359
+ if debug:
360
+ for i in range(world_size):
361
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
362
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
363
+
364
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
365
+ wanted_params = len(frozen_param_shapes)
366
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
367
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
368
+ print(f'Frozen params: Have {avail_numel} numels to process.')
369
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
370
+
371
+ total_params = 0
372
+ total_numel = 0
373
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
374
+ total_params += 1
375
+ unpartitioned_numel = shape.numel()
376
+ total_numel += unpartitioned_numel
377
+
378
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
379
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
380
+
381
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
382
+
383
+ if debug:
384
+ print(
385
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
386
+ )
387
+
388
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
389
+
390
+
391
+ class GatheredTensor:
392
+ """
393
+ A pseudo tensor that collects partitioned weights.
394
+ It is more memory efficient when there are multiple groups.
395
+ """
396
+
397
+ def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
398
+ self.flat_groups = flat_groups
399
+ self.flat_groups_offset = flat_groups_offset
400
+ self.offset = offset
401
+ self.partitioned_numel = partitioned_numel
402
+ self.shape = shape
403
+ self.dtype = self.flat_groups[0][0].dtype
404
+
405
+ def contiguous(self):
406
+ """
407
+ Merge partitioned weights from flat_groups into a single tensor.
408
+ """
409
+ end_idx = self.offset + self.partitioned_numel
410
+ world_size = len(self.flat_groups)
411
+ pad_flat_param_chunks = []
412
+
413
+ for rank_i in range(world_size):
414
+ # for each rank, we need to collect weights from related group/groups
415
+ flat_groups_at_rank_i = self.flat_groups[rank_i]
416
+ start_group_id = None
417
+ end_group_id = None
418
+ for group_id in range(len(self.flat_groups_offset)):
419
+ if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
420
+ start_group_id = group_id
421
+ if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
422
+ end_group_id = group_id
423
+ break
424
+ # collect weights from related group/groups
425
+ for group_id in range(start_group_id, end_group_id + 1):
426
+ flat_tensor = flat_groups_at_rank_i[group_id]
427
+ start_offset = self.offset - self.flat_groups_offset[group_id]
428
+ end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
429
+ pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
430
+
431
+ # collect weights from all ranks
432
+ pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
433
+ param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
434
+ return param
435
+
436
+
437
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
438
+ param_shapes = zero_model_states[0].param_shapes
439
+ avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
440
+
441
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
442
+ # param, re-consolidating each param, while dealing with padding if any
443
+
444
+ # merge list of dicts, preserving order
445
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
446
+
447
+ if debug:
448
+ for i in range(world_size):
449
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
450
+
451
+ wanted_params = len(param_shapes)
452
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
453
+ # not asserting if there is a mismatch due to possible padding
454
+ avail_numel = fp32_flat_groups[0].numel() * world_size
455
+ print(f"Trainable params: Have {avail_numel} numels to process.")
456
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
457
+
458
+ # params
459
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
460
+ # out-of-core computing solution
461
+ offset = 0
462
+ total_numel = 0
463
+ total_params = 0
464
+ flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
465
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
466
+ unpartitioned_numel = shape.numel()
467
+ total_numel += unpartitioned_numel
468
+ total_params += 1
469
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
470
+
471
+ if debug:
472
+ print(
473
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
474
+ )
475
+
476
+ # memory efficient tensor
477
+ tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
478
+ state_dict[name] = tensor
479
+ offset += partitioned_numel
480
+
481
+ offset *= world_size
482
+
483
+ # Sanity check
484
+ if offset != avail_numel:
485
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
486
+
487
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
488
+
489
+
490
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
491
+ exclude_frozen_parameters):
492
+ state_dict = OrderedDict()
493
+
494
+ # buffers
495
+ buffers = zero_model_states[0].buffers
496
+ state_dict.update(buffers)
497
+ if debug:
498
+ print(f"added {len(buffers)} buffers")
499
+
500
+ if not exclude_frozen_parameters:
501
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
502
+
503
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
504
+
505
+ # recover shared parameters
506
+ for pair in zero_model_states[0].shared_params:
507
+ if pair[1] in state_dict:
508
+ state_dict[pair[0]] = state_dict[pair[1]]
509
+
510
+ return state_dict
511
+
512
+
513
+ def to_torch_tensor(state_dict, return_empty_tensor=False):
514
+ """
515
+ Convert state_dict of GatheredTensor to torch tensor
516
+ """
517
+ torch_state_dict = {}
518
+ converted_tensors = {}
519
+ for name, tensor in state_dict.items():
520
+ tensor_id = id(tensor)
521
+ if tensor_id in converted_tensors: # shared tensors
522
+ shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
523
+ torch_state_dict[name] = shared_tensor
524
+ else:
525
+ converted_tensors[tensor_id] = name
526
+ if return_empty_tensor:
527
+ torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
528
+ else:
529
+ torch_state_dict[name] = tensor.contiguous()
530
+ return torch_state_dict
531
+
532
+
533
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
534
+ tag=None,
535
+ exclude_frozen_parameters=False,
536
+ lazy_mode=False):
537
+ """
538
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
539
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
540
+ via a model hub.
541
+
542
+ Args:
543
+ - ``checkpoint_dir``: path to the desired checkpoint folder
544
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
545
+ - ``exclude_frozen_parameters``: exclude frozen parameters
546
+ - ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
547
+ Convert the pesduo tensor to torch tensor by ``.contiguous()``
548
+
549
+ Returns:
550
+ - pytorch ``state_dict``
551
+
552
+ A typical usage might be ::
553
+
554
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
555
+ # do the training and checkpoint saving
556
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
557
+ model = model.cpu() # move to cpu
558
+ model.load_state_dict(state_dict)
559
+ # submit to model hub or save the model to share with others
560
+
561
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
562
+ application. i.e. you will need to re-initialize the deepspeed engine, since
563
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
564
+
565
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
566
+
567
+ Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
568
+ You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
569
+ the checkpoint. Or you can load state_dict in lazy mode ::
570
+
571
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
572
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
573
+ for name, lazy_tensor in state_dict.item():
574
+ tensor = lazy_tensor.contiguous() # to cpu
575
+ print(name, tensor)
576
+ # del tensor to release memory if it no longer in use
577
+ """
578
+ if tag is None:
579
+ latest_path = os.path.join(checkpoint_dir, 'latest')
580
+ if os.path.isfile(latest_path):
581
+ with open(latest_path, 'r') as fd:
582
+ tag = fd.read().strip()
583
+ else:
584
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
585
+
586
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
587
+
588
+ if not os.path.isdir(ds_checkpoint_dir):
589
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
590
+
591
+ state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
592
+ if lazy_mode:
593
+ return state_dict
594
+ else:
595
+ return to_torch_tensor(state_dict)
596
+
597
+
598
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
599
+ output_dir,
600
+ max_shard_size="5GB",
601
+ safe_serialization=False,
602
+ tag=None,
603
+ exclude_frozen_parameters=False):
604
+ """
605
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
606
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
607
+
608
+ Args:
609
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
610
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
611
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
612
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
613
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
614
+ - ``exclude_frozen_parameters``: exclude frozen parameters
615
+ """
616
+
617
+ # Dependency pre-check
618
+ if safe_serialization:
619
+ try:
620
+ from safetensors.torch import save_file
621
+ except ImportError:
622
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
623
+ raise
624
+ if max_shard_size is not None:
625
+ try:
626
+ from huggingface_hub import split_torch_state_dict_into_shards
627
+ except ImportError:
628
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
629
+ raise
630
+
631
+ # Convert zero checkpoint to state_dict
632
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
633
+ tag,
634
+ exclude_frozen_parameters,
635
+ lazy_mode=True)
636
+
637
+ # Shard the model if it is too big.
638
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
639
+ if max_shard_size is not None:
640
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
641
+ # an memory-efficient approach for sharding
642
+ empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
643
+ state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
644
+ filename_pattern=filename_pattern,
645
+ max_shard_size=max_shard_size)
646
+ else:
647
+ from collections import namedtuple
648
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
649
+ state_dict_split = StateDictSplit(is_sharded=False,
650
+ filename_to_tensors={weights_name: list(state_dict.keys())})
651
+
652
+ # Save the model by shard
653
+ os.makedirs(output_dir, exist_ok=True)
654
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
655
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
656
+ shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
657
+ shard_state_dict = to_torch_tensor(shard_state_dict)
658
+ output_path = os.path.join(output_dir, shard_file)
659
+ if safe_serialization:
660
+ save_file(shard_state_dict, output_path, metadata={"format": "pt"})
661
+ else:
662
+ torch.save(shard_state_dict, output_path)
663
+ # release the memory of current shard
664
+ for tensor_name in list(shard_state_dict.keys()):
665
+ del state_dict[tensor_name]
666
+ del shard_state_dict[tensor_name]
667
+ del shard_state_dict
668
+ gc.collect()
669
+
670
+ # Save index if sharded
671
+ if state_dict_split.is_sharded:
672
+ index = {
673
+ "metadata": state_dict_split.metadata,
674
+ "weight_map": state_dict_split.tensor_to_filename,
675
+ }
676
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
677
+ save_index_file = os.path.join(output_dir, save_index_file)
678
+ with open(save_index_file, "w", encoding="utf-8") as f:
679
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
680
+ f.write(content)
681
+
682
+
683
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
684
+ """
685
+ 1. Put the provided model to cpu
686
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
687
+ 3. Load it into the provided model
688
+
689
+ Args:
690
+ - ``model``: the model object to update
691
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
692
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
693
+
694
+ Returns:
695
+ - ``model`: modified model
696
+
697
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
698
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
699
+ conveniently placed for you in the checkpoint folder.
700
+
701
+ A typical usage might be ::
702
+
703
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
704
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
705
+ # submit to model hub or save the model to share with others
706
+
707
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
708
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
709
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
710
+
711
+ """
712
+ logger.info(f"Extracting fp32 weights")
713
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
714
+
715
+ logger.info(f"Overwriting model with fp32 weights")
716
+ model = model.cpu()
717
+ model.load_state_dict(state_dict, strict=False)
718
+
719
+ return model
720
+
721
+
722
+ if __name__ == "__main__":
723
+ parser = argparse.ArgumentParser()
724
+ parser.add_argument("checkpoint_dir",
725
+ type=str,
726
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
727
+ parser.add_argument("output_dir",
728
+ type=str,
729
+ help="directory to the pytorch fp32 state_dict output files"
730
+ "(e.g. path/checkpoint-12-output/)")
731
+ parser.add_argument(
732
+ "--max_shard_size",
733
+ type=str,
734
+ default="5GB",
735
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
736
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
737
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
738
+ "without CPU OOM issues.")
739
+ parser.add_argument(
740
+ "--safe_serialization",
741
+ default=False,
742
+ action='store_true',
743
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
744
+ parser.add_argument("-t",
745
+ "--tag",
746
+ type=str,
747
+ default=None,
748
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
749
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
750
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
751
+ args = parser.parse_args()
752
+
753
+ debug = args.debug
754
+
755
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
756
+ args.output_dir,
757
+ max_shard_size=args.max_shard_size,
758
+ safe_serialization=args.safe_serialization,
759
+ tag=args.tag,
760
+ exclude_frozen_parameters=args.exclude_frozen_parameters)