Upload folder using huggingface_hub
Browse files- .gitattributes +2 -0
- added_tokens.json +4 -0
- config.json +27 -0
- data/.ipynb_checkpoints/ddd-checkpoint.py +60 -0
- data/.ipynb_checkpoints/magnum-checkpoint.yml +99 -0
- data/.ipynb_checkpoints/nemo-checkpoint.yml +94 -0
- data/.ipynb_checkpoints/pre_train-checkpoint.yml +86 -0
- data/.ipynb_checkpoints/test-checkpoint.py +62 -0
- data/ddd.py +60 -0
- data/magnum.yml +99 -0
- data/nemo.yml +94 -0
- data/pre_train.yml +86 -0
- data/test.py +62 -0
- data/valid_records.jsonl +3 -0
- generation_config.json +7 -0
- global_step606/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- global_step606/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
- global_step606/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
- global_step606/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
- global_step606/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt +3 -0
- global_step606/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt +3 -0
- global_step606/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt +3 -0
- global_step606/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt +3 -0
- global_step606/mp_rank_00_model_states.pt +3 -0
- latest +1 -0
- merges.txt +0 -0
- model-00001-of-00005.safetensors +3 -0
- model-00002-of-00005.safetensors +3 -0
- model-00003-of-00005.safetensors +3 -0
- model-00004-of-00005.safetensors +3 -0
- model-00005-of-00005.safetensors +3 -0
- model.safetensors.index.json +370 -0
- rng_state_0.pth +3 -0
- rng_state_1.pth +3 -0
- rng_state_2.pth +3 -0
- rng_state_3.pth +3 -0
- rng_state_4.pth +3 -0
- rng_state_5.pth +3 -0
- rng_state_6.pth +3 -0
- rng_state_7.pth +3 -0
- scheduler.pt +3 -0
- special_tokens_map.json +30 -0
- tokenizer.json +3 -0
- tokenizer_config.json +0 -0
- trainer_state.json +0 -0
- training_args.bin +3 -0
- vocab.json +0 -0
- zero_to_fp32.py +760 -0
.gitattributes
CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
data/valid_records.jsonl filter=lfs diff=lfs merge=lfs -text
|
37 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
added_tokens.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<|im_end|>": 131072,
|
3 |
+
"<|im_start|>": 131073
|
4 |
+
}
|
config.json
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/root/autodl-tmp/out/checkpoint-1902",
|
3 |
+
"architectures": [
|
4 |
+
"MistralForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 1,
|
8 |
+
"eos_token_id": 131072,
|
9 |
+
"head_dim": 128,
|
10 |
+
"hidden_act": "silu",
|
11 |
+
"hidden_size": 5120,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 14336,
|
14 |
+
"max_position_embeddings": 1024000,
|
15 |
+
"model_type": "mistral",
|
16 |
+
"num_attention_heads": 32,
|
17 |
+
"num_hidden_layers": 40,
|
18 |
+
"num_key_value_heads": 8,
|
19 |
+
"rms_norm_eps": 1e-05,
|
20 |
+
"rope_theta": 1000000.0,
|
21 |
+
"sliding_window": null,
|
22 |
+
"tie_word_embeddings": false,
|
23 |
+
"torch_dtype": "bfloat16",
|
24 |
+
"transformers_version": "4.46.3",
|
25 |
+
"use_cache": false,
|
26 |
+
"vocab_size": 131074
|
27 |
+
}
|
data/.ipynb_checkpoints/ddd-checkpoint.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
|
3 |
+
def process_conversations(input_file, invalid_output_file, valid_output_file):
|
4 |
+
"""
|
5 |
+
解析 JSONL 文件,检查 `conversations` 列表是否符合条件:
|
6 |
+
- 必须存在
|
7 |
+
- 必须为列表
|
8 |
+
- 列表长度 >= 2
|
9 |
+
将不符合条件的记录保存到 `invalid_output_file`,
|
10 |
+
将符合条件的记录保存到 `valid_output_file`。
|
11 |
+
"""
|
12 |
+
invalid_records = [] # 用于存储无效记录
|
13 |
+
valid_records = [] # 用于存储有效记录
|
14 |
+
|
15 |
+
with open(input_file, 'r', encoding='utf-8') as infile:
|
16 |
+
for line_number, line in enumerate(infile, start=1):
|
17 |
+
try:
|
18 |
+
# 尝试解析每一行 JSON
|
19 |
+
data = json.loads(line)
|
20 |
+
|
21 |
+
# 检查 `conversations` 是否存在且为非空列表,且长度 >= 2
|
22 |
+
if isinstance(data.get("conversations"), list) and len(data["conversations"]) >= 2:
|
23 |
+
valid_records.append(data) # 符合条件的记录
|
24 |
+
else:
|
25 |
+
invalid_records.append({
|
26 |
+
"line_number": line_number,
|
27 |
+
"data": data # 不符合条件的记录
|
28 |
+
})
|
29 |
+
except json.JSONDecodeError as e:
|
30 |
+
# 捕获 JSON 格式错误
|
31 |
+
invalid_records.append({
|
32 |
+
"line_number": line_number,
|
33 |
+
"error": f"JSONDecodeError: {str(e)}",
|
34 |
+
"data": line.strip() # 原始数据
|
35 |
+
})
|
36 |
+
|
37 |
+
# 将无效记录写入到无效输出文件
|
38 |
+
with open(invalid_output_file, 'w', encoding='utf-8') as invalid_file:
|
39 |
+
json.dump(invalid_records, invalid_file, ensure_ascii=False, indent=4)
|
40 |
+
|
41 |
+
# 将符合条件的记录写入到有效输出文件
|
42 |
+
with open(valid_output_file, 'w', encoding='utf-8') as valid_file:
|
43 |
+
for record in valid_records:
|
44 |
+
valid_file.write(json.dumps(record, ensure_ascii=False) + '\n')
|
45 |
+
|
46 |
+
# 打印统计信息
|
47 |
+
print(f"总记录数: {line_number}")
|
48 |
+
print(f"有效记录数: {len(valid_records)}")
|
49 |
+
print(f"无效记录数: {len(invalid_records)}")
|
50 |
+
print(f"无效记录已保存到: {invalid_output_file}")
|
51 |
+
print(f"有效记录已保存到: {valid_output_file}")
|
52 |
+
|
53 |
+
|
54 |
+
# 示例:指定输入和输出文件路径
|
55 |
+
input_file = "model5_digg1_safe.jsonl" # 输入的 JSONL 文件路径
|
56 |
+
invalid_output_file = "invalid_records.json" # 保存无效记录的文件路径
|
57 |
+
valid_output_file = "valid_records.jsonl" # 保存有效记录的文件路径
|
58 |
+
|
59 |
+
# 运行函数
|
60 |
+
process_conversations(input_file, invalid_output_file, valid_output_file)
|
data/.ipynb_checkpoints/magnum-checkpoint.yml
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
base_model: /root/autodl-tmp/out/checkpoint-1902
|
2 |
+
model_type: AutoModelForCausalLM
|
3 |
+
tokenizer_type: AutoTokenizer
|
4 |
+
|
5 |
+
#hub_model_id: anthracite-org/magnum-v4-12b-r2
|
6 |
+
#hub_strategy: "all_checkpoints"
|
7 |
+
#push_dataset_to_hub:
|
8 |
+
#hf_use_auth_token: true
|
9 |
+
|
10 |
+
plugins:
|
11 |
+
- axolotl.integrations.liger.LigerPlugin
|
12 |
+
liger_rope: true
|
13 |
+
liger_rms_norm: true
|
14 |
+
liger_swiglu: true
|
15 |
+
liger_fused_linear_cross_entropy: true
|
16 |
+
|
17 |
+
load_in_8bit: false
|
18 |
+
load_in_4bit: false
|
19 |
+
strict: false
|
20 |
+
|
21 |
+
datasets:
|
22 |
+
- path: anthracite-org/c2_logs_32k_llama3_qwen2_v1.2_no_system
|
23 |
+
type: chat_template
|
24 |
+
field_messages: conversations
|
25 |
+
message_field_role: from
|
26 |
+
message_field_content: value
|
27 |
+
- path: allenai/tulu-3-sft-mixture
|
28 |
+
type: chat_template
|
29 |
+
field_messages: messages
|
30 |
+
message_field_role: role
|
31 |
+
message_field_content: content
|
32 |
+
- path: /root/autodl-tmp/valid_records.jsonl
|
33 |
+
type: chat_template
|
34 |
+
field_messages: conversations
|
35 |
+
message_field_role: role
|
36 |
+
message_field_content: content
|
37 |
+
chat_template: chatml
|
38 |
+
shuffle_merged_datasets: true
|
39 |
+
#default_system_message: "You are an assistant that responds to the user."
|
40 |
+
dataset_prepared_path: /root/autodl-tmp/magnum-12b-data
|
41 |
+
val_set_size: 0.0
|
42 |
+
output_dir: /root/autodl-tmp/12b-fft-out
|
43 |
+
|
44 |
+
sequence_len: 32768
|
45 |
+
sample_packing: true
|
46 |
+
pad_to_sequence_len: true
|
47 |
+
|
48 |
+
adapter:
|
49 |
+
lora_model_dir:
|
50 |
+
lora_r:
|
51 |
+
lora_alpha:
|
52 |
+
lora_dropout:
|
53 |
+
lora_target_linear:
|
54 |
+
lora_fan_in_fan_out:
|
55 |
+
|
56 |
+
wandb_project: 12b-magnum-fft
|
57 |
+
wandb_entity:
|
58 |
+
wandb_watch:
|
59 |
+
wandb_name: v4-r2-attempt-01
|
60 |
+
wandb_log_model:
|
61 |
+
|
62 |
+
gradient_accumulation_steps: 16
|
63 |
+
micro_batch_size: 1
|
64 |
+
num_epochs: 3
|
65 |
+
optimizer: adamw_torch
|
66 |
+
lr_scheduler: cosine
|
67 |
+
learning_rate: 5e-6
|
68 |
+
|
69 |
+
train_on_inputs: false
|
70 |
+
group_by_length: false
|
71 |
+
bf16: auto
|
72 |
+
fp16:
|
73 |
+
tf32: false
|
74 |
+
|
75 |
+
gradient_checkpointing: true
|
76 |
+
early_stopping_patience:
|
77 |
+
resume_from_checkpoint:
|
78 |
+
local_rank:
|
79 |
+
logging_steps: 1
|
80 |
+
xformers_attention:
|
81 |
+
flash_attention: true
|
82 |
+
|
83 |
+
warmup_steps: 100
|
84 |
+
evals_per_epoch:
|
85 |
+
eval_table_size:
|
86 |
+
eval_max_new_tokens:
|
87 |
+
saves_per_epoch: 2
|
88 |
+
debug:
|
89 |
+
deepspeed: /root/autodl-tmp/zero2.json
|
90 |
+
weight_decay: 0.1
|
91 |
+
fsdp:
|
92 |
+
fsdp_config:
|
93 |
+
special_tokens:
|
94 |
+
eos_token: "<|im_end|>"
|
95 |
+
pad_token: "<pad>"
|
96 |
+
bos_token: "<s>"
|
97 |
+
unk_token: "<unk>"
|
98 |
+
tokens:
|
99 |
+
- "<|im_start|>"
|
data/.ipynb_checkpoints/nemo-checkpoint.yml
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
base_model: /root/autodl-tmp/SillyTilly/mistralai_Mistral-Nemo-Base-2407
|
2 |
+
model_type: AutoModelForCausalLM
|
3 |
+
tokenizer_type: AutoTokenizer
|
4 |
+
|
5 |
+
#hub_model_id: taozi555/hiwaifu-12b
|
6 |
+
#hub_strategy: "all_checkpoints"
|
7 |
+
#push_dataset_to_hub:
|
8 |
+
#hf_use_auth_token: true
|
9 |
+
|
10 |
+
plugins:
|
11 |
+
- axolotl.integrations.liger.LigerPlugin
|
12 |
+
liger_rope: true
|
13 |
+
liger_rms_norm: true
|
14 |
+
liger_swiglu: true
|
15 |
+
liger_fused_linear_cross_entropy: true
|
16 |
+
|
17 |
+
load_in_8bit: false
|
18 |
+
load_in_4bit: false
|
19 |
+
strict: false
|
20 |
+
max_steps: 5000
|
21 |
+
|
22 |
+
save_total_limit: 5
|
23 |
+
pretraining_dataset:
|
24 |
+
- path: taozi555/novel_text
|
25 |
+
name: default
|
26 |
+
type: pretrain
|
27 |
+
- path: ToastyPigeon/SpringDragon
|
28 |
+
type: pretrain
|
29 |
+
- path: allura-org/sugarquill-10k
|
30 |
+
type: pretrain
|
31 |
+
- path: allura-org/fujin-cleaned-stage-2
|
32 |
+
type: pretrain
|
33 |
+
|
34 |
+
shuffle_merged_datasets: true
|
35 |
+
#default_system_message: "You are an assistant that responds to the user."
|
36 |
+
dataset_prepared_path: /root/autodl-tmp/data/
|
37 |
+
val_set_size: 0.0
|
38 |
+
output_dir: /root/autodl-tmp/hiwaifu-12b-Instruct/
|
39 |
+
|
40 |
+
sequence_len: 32768
|
41 |
+
sample_packing: true
|
42 |
+
pad_to_sequence_len: true
|
43 |
+
|
44 |
+
adapter:
|
45 |
+
lora_model_dir:
|
46 |
+
lora_r:
|
47 |
+
lora_alpha:
|
48 |
+
lora_dropout:
|
49 |
+
lora_target_linear:
|
50 |
+
lora_fan_in_fan_out:
|
51 |
+
|
52 |
+
|
53 |
+
wandb_project: hiwaifu-12b
|
54 |
+
wandb_entity:
|
55 |
+
wandb_watch:
|
56 |
+
wandb_name: hiwaifu-12b-pretrain
|
57 |
+
wandb_log_model:
|
58 |
+
|
59 |
+
gradient_accumulation_steps: 2
|
60 |
+
micro_batch_size: 1
|
61 |
+
num_epochs: 3
|
62 |
+
optimizer: paged_adamw_8bit
|
63 |
+
warmup_ratio: 0.05
|
64 |
+
learning_rate: 0.0002
|
65 |
+
lr_scheduler: cosine
|
66 |
+
|
67 |
+
|
68 |
+
train_on_inputs: false
|
69 |
+
group_by_length: false
|
70 |
+
bf16: auto
|
71 |
+
fp16:
|
72 |
+
tf32: false
|
73 |
+
|
74 |
+
gradient_checkpointing: true
|
75 |
+
early_stopping_patience:
|
76 |
+
resume_from_checkpoint:
|
77 |
+
local_rank:
|
78 |
+
logging_steps: 1
|
79 |
+
xformers_attention:
|
80 |
+
flash_attention: true
|
81 |
+
|
82 |
+
## Evaluation
|
83 |
+
val_set_size: 0.0
|
84 |
+
#evals_per_epoch: 4
|
85 |
+
eval_table_size:
|
86 |
+
#eval_max_new_tokens: 128
|
87 |
+
saves_per_epoch: 2
|
88 |
+
debug:
|
89 |
+
deepspeed: /root/autodl-tmp/zero2.json
|
90 |
+
weight_decay: 0.1
|
91 |
+
fsdp:
|
92 |
+
fsdp_config:
|
93 |
+
special_tokens:
|
94 |
+
pad_token: <pad>
|
data/.ipynb_checkpoints/pre_train-checkpoint.yml
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
base_model: /root/autodl-tmp/SillyTilly/mistralai_Mistral-Nemo-Base-2407
|
2 |
+
model_type: AutoModelForCausalLM
|
3 |
+
tokenizer_type: AutoTokenizer
|
4 |
+
|
5 |
+
|
6 |
+
|
7 |
+
plugins:
|
8 |
+
- axolotl.integrations.liger.LigerPlugin
|
9 |
+
liger_rope: true
|
10 |
+
liger_rms_norm: true
|
11 |
+
liger_swiglu: true
|
12 |
+
liger_fused_linear_cross_entropy: true
|
13 |
+
|
14 |
+
load_in_8bit: false
|
15 |
+
load_in_4bit: false
|
16 |
+
strict: false
|
17 |
+
|
18 |
+
datasets:
|
19 |
+
- path: taozi555/novel_text
|
20 |
+
name: default
|
21 |
+
type: completion
|
22 |
+
- path: ToastyPigeon/SpringDragon
|
23 |
+
type: completion
|
24 |
+
- path: allura-org/sugarquill-10k
|
25 |
+
type: completion
|
26 |
+
- path: allura-org/fujin-cleaned-stage-2
|
27 |
+
type: completion
|
28 |
+
#chat_template: chatml
|
29 |
+
shuffle_merged_datasets: true
|
30 |
+
#default_system_message: "You are an assistant that responds to the user."
|
31 |
+
dataset_prepared_path: /root/autodl-tmp/magnum-12b-data
|
32 |
+
val_set_size: 0.0
|
33 |
+
output_dir: /root/autodl-tmp/out
|
34 |
+
|
35 |
+
sequence_len: 32768
|
36 |
+
sample_packing: true
|
37 |
+
pad_to_sequence_len: true
|
38 |
+
|
39 |
+
adapter:
|
40 |
+
lora_model_dir:
|
41 |
+
lora_r:
|
42 |
+
lora_alpha:
|
43 |
+
lora_dropout:
|
44 |
+
lora_target_linear:
|
45 |
+
lora_fan_in_fan_out:
|
46 |
+
|
47 |
+
wandb_project: 12b-magnum-fft
|
48 |
+
wandb_entity:
|
49 |
+
wandb_watch:
|
50 |
+
wandb_name: v4-r2-attempt-01
|
51 |
+
wandb_log_model:
|
52 |
+
|
53 |
+
gradient_accumulation_steps: 2
|
54 |
+
micro_batch_size: 1
|
55 |
+
num_epochs: 2
|
56 |
+
optimizer: adamw_torch
|
57 |
+
lr_scheduler: cosine
|
58 |
+
learning_rate: 0.00003
|
59 |
+
|
60 |
+
train_on_inputs: false
|
61 |
+
group_by_length: false
|
62 |
+
bf16: auto
|
63 |
+
fp16:
|
64 |
+
tf32: false
|
65 |
+
|
66 |
+
gradient_checkpointing: true
|
67 |
+
early_stopping_patience:
|
68 |
+
resume_from_checkpoint:
|
69 |
+
local_rank:
|
70 |
+
logging_steps: 1
|
71 |
+
xformers_attention:
|
72 |
+
flash_attention: true
|
73 |
+
|
74 |
+
warmup_steps: 40
|
75 |
+
evals_per_epoch:
|
76 |
+
eval_table_size:
|
77 |
+
eval_max_new_tokens:
|
78 |
+
saves_per_epoch: 2
|
79 |
+
debug:
|
80 |
+
deepspeed: /root/autodl-tmp/zero2.json
|
81 |
+
weight_decay: 0.1
|
82 |
+
fsdp:
|
83 |
+
fsdp_config:
|
84 |
+
special_tokens:
|
85 |
+
pad_token: <pad>
|
86 |
+
|
data/.ipynb_checkpoints/test-checkpoint.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoTokenizer
|
2 |
+
tokenizer = AutoTokenizer.from_pretrained("MarsupialAI/Monstral-123B-v2")
|
3 |
+
|
4 |
+
chat = [
|
5 |
+
{"role": "system", "content": "3525265246346?"},
|
6 |
+
{"role": "user", "content": "Hello, how are you?I'm doing great. How can I help you today?I'm doing great. How can I help you today?I'm doing great. How can I help you today?I'm doing great. How can I help you today?I'm doing great. How can I help you today?"},
|
7 |
+
{"role": "assistant", "content": "I'm doing great. How can I help you today?"},
|
8 |
+
{"role": "user", "content": "I'd like to show off how chat templating works!"},
|
9 |
+
]
|
10 |
+
print(tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True))
|
11 |
+
def apply_chat_template_with_length_limit(tokenizer, conversations, max_length, chat_template=None):
|
12 |
+
"""
|
13 |
+
Apply a chat template with a length limit.
|
14 |
+
|
15 |
+
Parameters:
|
16 |
+
- tokenizer: The tokenizer object that provides the apply_chat_template method.
|
17 |
+
- conversations: List of messages to include in the chat.
|
18 |
+
- max_length: Maximum token length allowed.
|
19 |
+
- chat_template: Optional custom chat template.
|
20 |
+
|
21 |
+
Returns:
|
22 |
+
- A string containing the chat template filled with valid messages.
|
23 |
+
"""
|
24 |
+
# 确保至少有一条消息
|
25 |
+
if not conversations:
|
26 |
+
return ""
|
27 |
+
|
28 |
+
# 保留第一条消息
|
29 |
+
first_msg = conversations[0]
|
30 |
+
remaining_msgs = conversations[1:]
|
31 |
+
|
32 |
+
valid_conv = []
|
33 |
+
|
34 |
+
# 计算模板和第一条消息需要的token数
|
35 |
+
template_tokens = len(tokenizer.apply_chat_template([first_msg], chat_template=chat_template))
|
36 |
+
if template_tokens <= max_length:
|
37 |
+
valid_conv.append(first_msg)
|
38 |
+
remaining_length = max_length - template_tokens
|
39 |
+
else:
|
40 |
+
# 第一条消息超出限制,跳过
|
41 |
+
remaining_length = max_length
|
42 |
+
|
43 |
+
# 从旧到新逐条添加消息
|
44 |
+
for message in remaining_msgs:
|
45 |
+
# 临时添加当前消息
|
46 |
+
temp_conv = valid_conv + [message]
|
47 |
+
tokens = tokenizer.apply_chat_template(temp_conv, chat_template=chat_template)
|
48 |
+
|
49 |
+
# 检查添加这条消息后是否超长
|
50 |
+
if len(tokens) <= max_length:
|
51 |
+
valid_conv = temp_conv
|
52 |
+
remaining_length -= len(tokens) - (
|
53 |
+
template_tokens if len(valid_conv) == 1 else 0
|
54 |
+
)
|
55 |
+
else:
|
56 |
+
break
|
57 |
+
|
58 |
+
return tokenizer.apply_chat_template(valid_conv, tokenize=False, add_generation_prompt=True, chat_template=chat_template)
|
59 |
+
|
60 |
+
|
61 |
+
#re = apply_chat_template_with_length_limit(tokenizer,chat, 100)
|
62 |
+
#print(re)
|
data/ddd.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
|
3 |
+
def process_conversations(input_file, invalid_output_file, valid_output_file):
|
4 |
+
"""
|
5 |
+
解析 JSONL 文件,检查 `conversations` 列表是否符合条件:
|
6 |
+
- 必须存在
|
7 |
+
- 必须为列表
|
8 |
+
- 列表长度 >= 2
|
9 |
+
将不符合条件的记录保存到 `invalid_output_file`,
|
10 |
+
将符合条件的记录保存到 `valid_output_file`。
|
11 |
+
"""
|
12 |
+
invalid_records = [] # 用于存储无效记录
|
13 |
+
valid_records = [] # 用于存储有效记录
|
14 |
+
|
15 |
+
with open(input_file, 'r', encoding='utf-8') as infile:
|
16 |
+
for line_number, line in enumerate(infile, start=1):
|
17 |
+
try:
|
18 |
+
# 尝试解析每一行 JSON
|
19 |
+
data = json.loads(line)
|
20 |
+
|
21 |
+
# 检查 `conversations` 是否存在且为非空列表,且长度 >= 2
|
22 |
+
if isinstance(data.get("conversations"), list) and len(data["conversations"]) >= 2:
|
23 |
+
valid_records.append(data) # 符合条件的记录
|
24 |
+
else:
|
25 |
+
invalid_records.append({
|
26 |
+
"line_number": line_number,
|
27 |
+
"data": data # 不符合条件的记录
|
28 |
+
})
|
29 |
+
except json.JSONDecodeError as e:
|
30 |
+
# 捕获 JSON 格式错误
|
31 |
+
invalid_records.append({
|
32 |
+
"line_number": line_number,
|
33 |
+
"error": f"JSONDecodeError: {str(e)}",
|
34 |
+
"data": line.strip() # 原始数据
|
35 |
+
})
|
36 |
+
|
37 |
+
# 将无效记录写入到无效输出文件
|
38 |
+
with open(invalid_output_file, 'w', encoding='utf-8') as invalid_file:
|
39 |
+
json.dump(invalid_records, invalid_file, ensure_ascii=False, indent=4)
|
40 |
+
|
41 |
+
# 将符合条件的记录写入到有效输出文件
|
42 |
+
with open(valid_output_file, 'w', encoding='utf-8') as valid_file:
|
43 |
+
for record in valid_records:
|
44 |
+
valid_file.write(json.dumps(record, ensure_ascii=False) + '\n')
|
45 |
+
|
46 |
+
# 打印统计信息
|
47 |
+
print(f"总记录数: {line_number}")
|
48 |
+
print(f"有效记录数: {len(valid_records)}")
|
49 |
+
print(f"无效记录数: {len(invalid_records)}")
|
50 |
+
print(f"无效记录已保存到: {invalid_output_file}")
|
51 |
+
print(f"有效记录已保存到: {valid_output_file}")
|
52 |
+
|
53 |
+
|
54 |
+
# 示例:指定输入和输出文件路径
|
55 |
+
input_file = "model5_digg1_safe.jsonl" # 输入的 JSONL 文件路径
|
56 |
+
invalid_output_file = "invalid_records.json" # 保存无效记录的文件路径
|
57 |
+
valid_output_file = "valid_records.jsonl" # 保存有效记录的文件路径
|
58 |
+
|
59 |
+
# 运行函数
|
60 |
+
process_conversations(input_file, invalid_output_file, valid_output_file)
|
data/magnum.yml
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
base_model: /root/autodl-tmp/out/checkpoint-1902
|
2 |
+
model_type: AutoModelForCausalLM
|
3 |
+
tokenizer_type: AutoTokenizer
|
4 |
+
|
5 |
+
#hub_model_id: anthracite-org/magnum-v4-12b-r2
|
6 |
+
#hub_strategy: "all_checkpoints"
|
7 |
+
#push_dataset_to_hub:
|
8 |
+
#hf_use_auth_token: true
|
9 |
+
|
10 |
+
plugins:
|
11 |
+
- axolotl.integrations.liger.LigerPlugin
|
12 |
+
liger_rope: true
|
13 |
+
liger_rms_norm: true
|
14 |
+
liger_swiglu: true
|
15 |
+
liger_fused_linear_cross_entropy: true
|
16 |
+
|
17 |
+
load_in_8bit: false
|
18 |
+
load_in_4bit: false
|
19 |
+
strict: false
|
20 |
+
|
21 |
+
datasets:
|
22 |
+
- path: anthracite-org/c2_logs_32k_llama3_qwen2_v1.2_no_system
|
23 |
+
type: chat_template
|
24 |
+
field_messages: conversations
|
25 |
+
message_field_role: from
|
26 |
+
message_field_content: value
|
27 |
+
- path: allenai/tulu-3-sft-mixture
|
28 |
+
type: chat_template
|
29 |
+
field_messages: messages
|
30 |
+
message_field_role: role
|
31 |
+
message_field_content: content
|
32 |
+
- path: /root/autodl-tmp/valid_records.jsonl
|
33 |
+
type: chat_template
|
34 |
+
field_messages: conversations
|
35 |
+
message_field_role: role
|
36 |
+
message_field_content: content
|
37 |
+
chat_template: chatml
|
38 |
+
shuffle_merged_datasets: true
|
39 |
+
#default_system_message: "You are an assistant that responds to the user."
|
40 |
+
dataset_prepared_path: /root/autodl-tmp/magnum-12b-data
|
41 |
+
val_set_size: 0.0
|
42 |
+
output_dir: /root/autodl-tmp/12b-fft-out
|
43 |
+
|
44 |
+
sequence_len: 32768
|
45 |
+
sample_packing: true
|
46 |
+
pad_to_sequence_len: true
|
47 |
+
|
48 |
+
adapter:
|
49 |
+
lora_model_dir:
|
50 |
+
lora_r:
|
51 |
+
lora_alpha:
|
52 |
+
lora_dropout:
|
53 |
+
lora_target_linear:
|
54 |
+
lora_fan_in_fan_out:
|
55 |
+
|
56 |
+
wandb_project: 12b-magnum-fft
|
57 |
+
wandb_entity:
|
58 |
+
wandb_watch:
|
59 |
+
wandb_name: v4-r2-attempt-01
|
60 |
+
wandb_log_model:
|
61 |
+
|
62 |
+
gradient_accumulation_steps: 16
|
63 |
+
micro_batch_size: 1
|
64 |
+
num_epochs: 3
|
65 |
+
optimizer: adamw_torch
|
66 |
+
lr_scheduler: cosine
|
67 |
+
learning_rate: 5e-6
|
68 |
+
|
69 |
+
train_on_inputs: false
|
70 |
+
group_by_length: false
|
71 |
+
bf16: auto
|
72 |
+
fp16:
|
73 |
+
tf32: false
|
74 |
+
|
75 |
+
gradient_checkpointing: true
|
76 |
+
early_stopping_patience:
|
77 |
+
resume_from_checkpoint:
|
78 |
+
local_rank:
|
79 |
+
logging_steps: 1
|
80 |
+
xformers_attention:
|
81 |
+
flash_attention: true
|
82 |
+
|
83 |
+
warmup_steps: 100
|
84 |
+
evals_per_epoch:
|
85 |
+
eval_table_size:
|
86 |
+
eval_max_new_tokens:
|
87 |
+
saves_per_epoch: 2
|
88 |
+
debug:
|
89 |
+
deepspeed: /root/autodl-tmp/zero2.json
|
90 |
+
weight_decay: 0.1
|
91 |
+
fsdp:
|
92 |
+
fsdp_config:
|
93 |
+
special_tokens:
|
94 |
+
eos_token: "<|im_end|>"
|
95 |
+
pad_token: "<pad>"
|
96 |
+
bos_token: "<s>"
|
97 |
+
unk_token: "<unk>"
|
98 |
+
tokens:
|
99 |
+
- "<|im_start|>"
|
data/nemo.yml
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
base_model: /root/autodl-tmp/SillyTilly/mistralai_Mistral-Nemo-Base-2407
|
2 |
+
model_type: AutoModelForCausalLM
|
3 |
+
tokenizer_type: AutoTokenizer
|
4 |
+
|
5 |
+
#hub_model_id: taozi555/hiwaifu-12b
|
6 |
+
#hub_strategy: "all_checkpoints"
|
7 |
+
#push_dataset_to_hub:
|
8 |
+
#hf_use_auth_token: true
|
9 |
+
|
10 |
+
plugins:
|
11 |
+
- axolotl.integrations.liger.LigerPlugin
|
12 |
+
liger_rope: true
|
13 |
+
liger_rms_norm: true
|
14 |
+
liger_swiglu: true
|
15 |
+
liger_fused_linear_cross_entropy: true
|
16 |
+
|
17 |
+
load_in_8bit: false
|
18 |
+
load_in_4bit: false
|
19 |
+
strict: false
|
20 |
+
max_steps: 5000
|
21 |
+
|
22 |
+
save_total_limit: 5
|
23 |
+
pretraining_dataset:
|
24 |
+
- path: taozi555/novel_text
|
25 |
+
name: default
|
26 |
+
type: pretrain
|
27 |
+
- path: ToastyPigeon/SpringDragon
|
28 |
+
type: pretrain
|
29 |
+
- path: allura-org/sugarquill-10k
|
30 |
+
type: pretrain
|
31 |
+
- path: allura-org/fujin-cleaned-stage-2
|
32 |
+
type: pretrain
|
33 |
+
|
34 |
+
shuffle_merged_datasets: true
|
35 |
+
#default_system_message: "You are an assistant that responds to the user."
|
36 |
+
dataset_prepared_path: /root/autodl-tmp/data/
|
37 |
+
val_set_size: 0.0
|
38 |
+
output_dir: /root/autodl-tmp/hiwaifu-12b-Instruct/
|
39 |
+
|
40 |
+
sequence_len: 32768
|
41 |
+
sample_packing: true
|
42 |
+
pad_to_sequence_len: true
|
43 |
+
|
44 |
+
adapter:
|
45 |
+
lora_model_dir:
|
46 |
+
lora_r:
|
47 |
+
lora_alpha:
|
48 |
+
lora_dropout:
|
49 |
+
lora_target_linear:
|
50 |
+
lora_fan_in_fan_out:
|
51 |
+
|
52 |
+
|
53 |
+
wandb_project: hiwaifu-12b
|
54 |
+
wandb_entity:
|
55 |
+
wandb_watch:
|
56 |
+
wandb_name: hiwaifu-12b-pretrain
|
57 |
+
wandb_log_model:
|
58 |
+
|
59 |
+
gradient_accumulation_steps: 2
|
60 |
+
micro_batch_size: 1
|
61 |
+
num_epochs: 3
|
62 |
+
optimizer: paged_adamw_8bit
|
63 |
+
warmup_ratio: 0.05
|
64 |
+
learning_rate: 0.0002
|
65 |
+
lr_scheduler: cosine
|
66 |
+
|
67 |
+
|
68 |
+
train_on_inputs: false
|
69 |
+
group_by_length: false
|
70 |
+
bf16: auto
|
71 |
+
fp16:
|
72 |
+
tf32: false
|
73 |
+
|
74 |
+
gradient_checkpointing: true
|
75 |
+
early_stopping_patience:
|
76 |
+
resume_from_checkpoint:
|
77 |
+
local_rank:
|
78 |
+
logging_steps: 1
|
79 |
+
xformers_attention:
|
80 |
+
flash_attention: true
|
81 |
+
|
82 |
+
## Evaluation
|
83 |
+
val_set_size: 0.0
|
84 |
+
#evals_per_epoch: 4
|
85 |
+
eval_table_size:
|
86 |
+
#eval_max_new_tokens: 128
|
87 |
+
saves_per_epoch: 2
|
88 |
+
debug:
|
89 |
+
deepspeed: /root/autodl-tmp/zero2.json
|
90 |
+
weight_decay: 0.1
|
91 |
+
fsdp:
|
92 |
+
fsdp_config:
|
93 |
+
special_tokens:
|
94 |
+
pad_token: <pad>
|
data/pre_train.yml
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
base_model: /root/autodl-tmp/SillyTilly/mistralai_Mistral-Nemo-Base-2407
|
2 |
+
model_type: AutoModelForCausalLM
|
3 |
+
tokenizer_type: AutoTokenizer
|
4 |
+
|
5 |
+
|
6 |
+
|
7 |
+
plugins:
|
8 |
+
- axolotl.integrations.liger.LigerPlugin
|
9 |
+
liger_rope: true
|
10 |
+
liger_rms_norm: true
|
11 |
+
liger_swiglu: true
|
12 |
+
liger_fused_linear_cross_entropy: true
|
13 |
+
|
14 |
+
load_in_8bit: false
|
15 |
+
load_in_4bit: false
|
16 |
+
strict: false
|
17 |
+
|
18 |
+
datasets:
|
19 |
+
- path: taozi555/novel_text
|
20 |
+
name: default
|
21 |
+
type: completion
|
22 |
+
- path: ToastyPigeon/SpringDragon
|
23 |
+
type: completion
|
24 |
+
- path: allura-org/sugarquill-10k
|
25 |
+
type: completion
|
26 |
+
- path: allura-org/fujin-cleaned-stage-2
|
27 |
+
type: completion
|
28 |
+
#chat_template: chatml
|
29 |
+
shuffle_merged_datasets: true
|
30 |
+
#default_system_message: "You are an assistant that responds to the user."
|
31 |
+
dataset_prepared_path: /root/autodl-tmp/magnum-12b-data
|
32 |
+
val_set_size: 0.0
|
33 |
+
output_dir: /root/autodl-tmp/out
|
34 |
+
|
35 |
+
sequence_len: 32768
|
36 |
+
sample_packing: true
|
37 |
+
pad_to_sequence_len: true
|
38 |
+
|
39 |
+
adapter:
|
40 |
+
lora_model_dir:
|
41 |
+
lora_r:
|
42 |
+
lora_alpha:
|
43 |
+
lora_dropout:
|
44 |
+
lora_target_linear:
|
45 |
+
lora_fan_in_fan_out:
|
46 |
+
|
47 |
+
wandb_project: 12b-magnum-fft
|
48 |
+
wandb_entity:
|
49 |
+
wandb_watch:
|
50 |
+
wandb_name: v4-r2-attempt-01
|
51 |
+
wandb_log_model:
|
52 |
+
|
53 |
+
gradient_accumulation_steps: 2
|
54 |
+
micro_batch_size: 1
|
55 |
+
num_epochs: 2
|
56 |
+
optimizer: adamw_torch
|
57 |
+
lr_scheduler: cosine
|
58 |
+
learning_rate: 0.00003
|
59 |
+
|
60 |
+
train_on_inputs: false
|
61 |
+
group_by_length: false
|
62 |
+
bf16: auto
|
63 |
+
fp16:
|
64 |
+
tf32: false
|
65 |
+
|
66 |
+
gradient_checkpointing: true
|
67 |
+
early_stopping_patience:
|
68 |
+
resume_from_checkpoint:
|
69 |
+
local_rank:
|
70 |
+
logging_steps: 1
|
71 |
+
xformers_attention:
|
72 |
+
flash_attention: true
|
73 |
+
|
74 |
+
warmup_steps: 40
|
75 |
+
evals_per_epoch:
|
76 |
+
eval_table_size:
|
77 |
+
eval_max_new_tokens:
|
78 |
+
saves_per_epoch: 2
|
79 |
+
debug:
|
80 |
+
deepspeed: /root/autodl-tmp/zero2.json
|
81 |
+
weight_decay: 0.1
|
82 |
+
fsdp:
|
83 |
+
fsdp_config:
|
84 |
+
special_tokens:
|
85 |
+
pad_token: <pad>
|
86 |
+
|
data/test.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoTokenizer
|
2 |
+
tokenizer = AutoTokenizer.from_pretrained("MarsupialAI/Monstral-123B-v2")
|
3 |
+
|
4 |
+
chat = [
|
5 |
+
{"role": "system", "content": "3525265246346?"},
|
6 |
+
{"role": "user", "content": "Hello, how are you?I'm doing great. How can I help you today?I'm doing great. How can I help you today?I'm doing great. How can I help you today?I'm doing great. How can I help you today?I'm doing great. How can I help you today?"},
|
7 |
+
{"role": "assistant", "content": "I'm doing great. How can I help you today?"},
|
8 |
+
{"role": "user", "content": "I'd like to show off how chat templating works!"},
|
9 |
+
]
|
10 |
+
print(tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True))
|
11 |
+
def apply_chat_template_with_length_limit(tokenizer, conversations, max_length, chat_template=None):
|
12 |
+
"""
|
13 |
+
Apply a chat template with a length limit.
|
14 |
+
|
15 |
+
Parameters:
|
16 |
+
- tokenizer: The tokenizer object that provides the apply_chat_template method.
|
17 |
+
- conversations: List of messages to include in the chat.
|
18 |
+
- max_length: Maximum token length allowed.
|
19 |
+
- chat_template: Optional custom chat template.
|
20 |
+
|
21 |
+
Returns:
|
22 |
+
- A string containing the chat template filled with valid messages.
|
23 |
+
"""
|
24 |
+
# 确保至少有一条消息
|
25 |
+
if not conversations:
|
26 |
+
return ""
|
27 |
+
|
28 |
+
# 保留第一条消息
|
29 |
+
first_msg = conversations[0]
|
30 |
+
remaining_msgs = conversations[1:]
|
31 |
+
|
32 |
+
valid_conv = []
|
33 |
+
|
34 |
+
# 计算模板和第一条消息需要的token数
|
35 |
+
template_tokens = len(tokenizer.apply_chat_template([first_msg], chat_template=chat_template))
|
36 |
+
if template_tokens <= max_length:
|
37 |
+
valid_conv.append(first_msg)
|
38 |
+
remaining_length = max_length - template_tokens
|
39 |
+
else:
|
40 |
+
# 第一条消息超出限制,跳过
|
41 |
+
remaining_length = max_length
|
42 |
+
|
43 |
+
# 从旧到新逐条添加消息
|
44 |
+
for message in remaining_msgs:
|
45 |
+
# 临时添加当前消息
|
46 |
+
temp_conv = valid_conv + [message]
|
47 |
+
tokens = tokenizer.apply_chat_template(temp_conv, chat_template=chat_template)
|
48 |
+
|
49 |
+
# 检查添加这条消息后是否超长
|
50 |
+
if len(tokens) <= max_length:
|
51 |
+
valid_conv = temp_conv
|
52 |
+
remaining_length -= len(tokens) - (
|
53 |
+
template_tokens if len(valid_conv) == 1 else 0
|
54 |
+
)
|
55 |
+
else:
|
56 |
+
break
|
57 |
+
|
58 |
+
return tokenizer.apply_chat_template(valid_conv, tokenize=False, add_generation_prompt=True, chat_template=chat_template)
|
59 |
+
|
60 |
+
|
61 |
+
#re = apply_chat_template_with_length_limit(tokenizer,chat, 100)
|
62 |
+
#print(re)
|
data/valid_records.jsonl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ef0698d000526d8a238cedcdfa5092f43ee31c2976861117b5cd465d0dc1ba88
|
3 |
+
size 41322927
|
generation_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"do_sample": true,
|
5 |
+
"eos_token_id": 2,
|
6 |
+
"transformers_version": "4.46.3"
|
7 |
+
}
|
global_step606/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:34a2875a1c9d30be6da8791d4380ef7cc97a0be85c7259c5f2ca28a1981c1faa
|
3 |
+
size 18371710396
|
global_step606/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8bf3034c1f15857cc6cd15d7965a888158c482292a3076ebcf9fb1edd037e203
|
3 |
+
size 18371711548
|
global_step606/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dc9bab8bb1e61a2bc0beb4d50cad2e40fe956e97a02917aa065bdf0eafca96bf
|
3 |
+
size 18371711932
|
global_step606/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:00a21111d45b585811e3d27ec70bfbebee3881ea60b522624036c438cf69ae31
|
3 |
+
size 18371711804
|
global_step606/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:104a535a31421aaae88df21c7cf00de65adc9cc1118ea559d882a036bd2e9479
|
3 |
+
size 18371711804
|
global_step606/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8646d6dd853e43fb074a2827f9b48db56fb083cd4bf3ca7c1d8accf6ba758dfd
|
3 |
+
size 18371711996
|
global_step606/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:918e3808df51c1f22039569ab4df28aad441ed2aa3fa4f40bd3795cc9528e129
|
3 |
+
size 18371711548
|
global_step606/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7d55a0eeccd46f8ef08e0b851f55a903450983c64d5e753d6cca4b5237a45092
|
3 |
+
size 18371710396
|
global_step606/mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:037af0cca9be97493a5dfa24c1a4cf187f9e9ad4710ff6330eab6a86db8676b9
|
3 |
+
size 24495713376
|
latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step606
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model-00001-of-00005.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9b3f67a872b0a5d198193931800612db887515fd2561f3e6e90c3441ac2fc75f
|
3 |
+
size 4865542976
|
model-00002-of-00005.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:144c2391fa83ab92cf146074e0024f9eca0d014a08828fd207922f6d2dcca2b7
|
3 |
+
size 4907529424
|
model-00003-of-00005.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aecad88cd17f6c308ee9d84a5e13fee41da47f123a13cd67cc6e8308d381ad3f
|
3 |
+
size 4907529456
|
model-00004-of-00005.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7b1de290f88da1be8bd9343a13f7eaaca3fbe4a7027d33181080b54936dab300
|
3 |
+
size 4907529456
|
model-00005-of-00005.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4572007c76a2fc23620b41b03c08e6c254e4c560891c80b17be7271a1a4ce516
|
3 |
+
size 4907516752
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,370 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 24495605760
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00005-of-00005.safetensors",
|
7 |
+
"model.embed_tokens.weight": "model-00001-of-00005.safetensors",
|
8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00005.safetensors",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
|
13 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
|
14 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
|
15 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
|
16 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
|
17 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00005.safetensors",
|
18 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
|
19 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
|
20 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
|
21 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
|
22 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
|
23 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
|
24 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
|
25 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
|
26 |
+
"model.layers.10.input_layernorm.weight": "model-00002-of-00005.safetensors",
|
27 |
+
"model.layers.10.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
|
28 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
|
29 |
+
"model.layers.10.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
|
30 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
|
31 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
|
32 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
|
33 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
|
34 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
|
35 |
+
"model.layers.11.input_layernorm.weight": "model-00002-of-00005.safetensors",
|
36 |
+
"model.layers.11.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
|
37 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
|
38 |
+
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
|
39 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
|
40 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
|
41 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
|
42 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
|
43 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
|
44 |
+
"model.layers.12.input_layernorm.weight": "model-00002-of-00005.safetensors",
|
45 |
+
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
|
46 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
|
47 |
+
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
|
48 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
|
49 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
|
50 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
|
51 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
|
52 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
|
53 |
+
"model.layers.13.input_layernorm.weight": "model-00002-of-00005.safetensors",
|
54 |
+
"model.layers.13.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
|
55 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
|
56 |
+
"model.layers.13.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
|
57 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
|
58 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
|
59 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
|
60 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
|
61 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
|
62 |
+
"model.layers.14.input_layernorm.weight": "model-00002-of-00005.safetensors",
|
63 |
+
"model.layers.14.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
|
64 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
|
65 |
+
"model.layers.14.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
|
66 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
|
67 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
|
68 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
|
69 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
|
70 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
|
71 |
+
"model.layers.15.input_layernorm.weight": "model-00003-of-00005.safetensors",
|
72 |
+
"model.layers.15.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
|
73 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
|
74 |
+
"model.layers.15.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
|
75 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
|
76 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
|
77 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
|
78 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
|
79 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
|
80 |
+
"model.layers.16.input_layernorm.weight": "model-00003-of-00005.safetensors",
|
81 |
+
"model.layers.16.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
|
82 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
|
83 |
+
"model.layers.16.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
|
84 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
|
85 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
|
86 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
|
87 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
|
88 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
|
89 |
+
"model.layers.17.input_layernorm.weight": "model-00003-of-00005.safetensors",
|
90 |
+
"model.layers.17.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
|
91 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
|
92 |
+
"model.layers.17.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
|
93 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
|
94 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
|
95 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
|
96 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
|
97 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
|
98 |
+
"model.layers.18.input_layernorm.weight": "model-00003-of-00005.safetensors",
|
99 |
+
"model.layers.18.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
|
100 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
|
101 |
+
"model.layers.18.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
|
102 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
|
103 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
|
104 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
|
105 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
|
106 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
|
107 |
+
"model.layers.19.input_layernorm.weight": "model-00003-of-00005.safetensors",
|
108 |
+
"model.layers.19.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
|
109 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
|
110 |
+
"model.layers.19.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
|
111 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
|
112 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
|
113 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
|
114 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
|
115 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
|
116 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00005.safetensors",
|
117 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
|
118 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
|
119 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
|
120 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
|
121 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
|
122 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
|
123 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
|
124 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
|
125 |
+
"model.layers.20.input_layernorm.weight": "model-00003-of-00005.safetensors",
|
126 |
+
"model.layers.20.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
|
127 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
|
128 |
+
"model.layers.20.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
|
129 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
|
130 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
|
131 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
|
132 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
|
133 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
|
134 |
+
"model.layers.21.input_layernorm.weight": "model-00003-of-00005.safetensors",
|
135 |
+
"model.layers.21.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
|
136 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
|
137 |
+
"model.layers.21.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
|
138 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
|
139 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
|
140 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
|
141 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
|
142 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
|
143 |
+
"model.layers.22.input_layernorm.weight": "model-00003-of-00005.safetensors",
|
144 |
+
"model.layers.22.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
|
145 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
|
146 |
+
"model.layers.22.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
|
147 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
|
148 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
|
149 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
|
150 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
|
151 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
|
152 |
+
"model.layers.23.input_layernorm.weight": "model-00003-of-00005.safetensors",
|
153 |
+
"model.layers.23.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
|
154 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
|
155 |
+
"model.layers.23.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
|
156 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
|
157 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
|
158 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
|
159 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
|
160 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
|
161 |
+
"model.layers.24.input_layernorm.weight": "model-00004-of-00005.safetensors",
|
162 |
+
"model.layers.24.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
|
163 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
|
164 |
+
"model.layers.24.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
|
165 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
|
166 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
|
167 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
|
168 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
|
169 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
|
170 |
+
"model.layers.25.input_layernorm.weight": "model-00004-of-00005.safetensors",
|
171 |
+
"model.layers.25.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
|
172 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
|
173 |
+
"model.layers.25.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
|
174 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
|
175 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
|
176 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
|
177 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
|
178 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
|
179 |
+
"model.layers.26.input_layernorm.weight": "model-00004-of-00005.safetensors",
|
180 |
+
"model.layers.26.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
|
181 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
|
182 |
+
"model.layers.26.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
|
183 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
|
184 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
|
185 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
|
186 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
|
187 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
|
188 |
+
"model.layers.27.input_layernorm.weight": "model-00004-of-00005.safetensors",
|
189 |
+
"model.layers.27.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
|
190 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
|
191 |
+
"model.layers.27.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
|
192 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
|
193 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
|
194 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
|
195 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
|
196 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
|
197 |
+
"model.layers.28.input_layernorm.weight": "model-00004-of-00005.safetensors",
|
198 |
+
"model.layers.28.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
|
199 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
|
200 |
+
"model.layers.28.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
|
201 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
|
202 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
|
203 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
|
204 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
|
205 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
|
206 |
+
"model.layers.29.input_layernorm.weight": "model-00004-of-00005.safetensors",
|
207 |
+
"model.layers.29.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
|
208 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
|
209 |
+
"model.layers.29.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
|
210 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
|
211 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
|
212 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
|
213 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
|
214 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
|
215 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00005.safetensors",
|
216 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
|
217 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
|
218 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
|
219 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
|
220 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
|
221 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
|
222 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
|
223 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
|
224 |
+
"model.layers.30.input_layernorm.weight": "model-00004-of-00005.safetensors",
|
225 |
+
"model.layers.30.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
|
226 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
|
227 |
+
"model.layers.30.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
|
228 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
|
229 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
|
230 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
|
231 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
|
232 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
|
233 |
+
"model.layers.31.input_layernorm.weight": "model-00004-of-00005.safetensors",
|
234 |
+
"model.layers.31.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
|
235 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
|
236 |
+
"model.layers.31.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
|
237 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
|
238 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
|
239 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
|
240 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
|
241 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
|
242 |
+
"model.layers.32.input_layernorm.weight": "model-00004-of-00005.safetensors",
|
243 |
+
"model.layers.32.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
|
244 |
+
"model.layers.32.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
|
245 |
+
"model.layers.32.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
|
246 |
+
"model.layers.32.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
|
247 |
+
"model.layers.32.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
|
248 |
+
"model.layers.32.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
|
249 |
+
"model.layers.32.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
|
250 |
+
"model.layers.32.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
|
251 |
+
"model.layers.33.input_layernorm.weight": "model-00005-of-00005.safetensors",
|
252 |
+
"model.layers.33.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
|
253 |
+
"model.layers.33.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
|
254 |
+
"model.layers.33.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
|
255 |
+
"model.layers.33.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
|
256 |
+
"model.layers.33.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
|
257 |
+
"model.layers.33.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
|
258 |
+
"model.layers.33.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
|
259 |
+
"model.layers.33.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
|
260 |
+
"model.layers.34.input_layernorm.weight": "model-00005-of-00005.safetensors",
|
261 |
+
"model.layers.34.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
|
262 |
+
"model.layers.34.mlp.gate_proj.weight": "model-00005-of-00005.safetensors",
|
263 |
+
"model.layers.34.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
|
264 |
+
"model.layers.34.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
|
265 |
+
"model.layers.34.self_attn.k_proj.weight": "model-00005-of-00005.safetensors",
|
266 |
+
"model.layers.34.self_attn.o_proj.weight": "model-00005-of-00005.safetensors",
|
267 |
+
"model.layers.34.self_attn.q_proj.weight": "model-00005-of-00005.safetensors",
|
268 |
+
"model.layers.34.self_attn.v_proj.weight": "model-00005-of-00005.safetensors",
|
269 |
+
"model.layers.35.input_layernorm.weight": "model-00005-of-00005.safetensors",
|
270 |
+
"model.layers.35.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
|
271 |
+
"model.layers.35.mlp.gate_proj.weight": "model-00005-of-00005.safetensors",
|
272 |
+
"model.layers.35.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
|
273 |
+
"model.layers.35.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
|
274 |
+
"model.layers.35.self_attn.k_proj.weight": "model-00005-of-00005.safetensors",
|
275 |
+
"model.layers.35.self_attn.o_proj.weight": "model-00005-of-00005.safetensors",
|
276 |
+
"model.layers.35.self_attn.q_proj.weight": "model-00005-of-00005.safetensors",
|
277 |
+
"model.layers.35.self_attn.v_proj.weight": "model-00005-of-00005.safetensors",
|
278 |
+
"model.layers.36.input_layernorm.weight": "model-00005-of-00005.safetensors",
|
279 |
+
"model.layers.36.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
|
280 |
+
"model.layers.36.mlp.gate_proj.weight": "model-00005-of-00005.safetensors",
|
281 |
+
"model.layers.36.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
|
282 |
+
"model.layers.36.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
|
283 |
+
"model.layers.36.self_attn.k_proj.weight": "model-00005-of-00005.safetensors",
|
284 |
+
"model.layers.36.self_attn.o_proj.weight": "model-00005-of-00005.safetensors",
|
285 |
+
"model.layers.36.self_attn.q_proj.weight": "model-00005-of-00005.safetensors",
|
286 |
+
"model.layers.36.self_attn.v_proj.weight": "model-00005-of-00005.safetensors",
|
287 |
+
"model.layers.37.input_layernorm.weight": "model-00005-of-00005.safetensors",
|
288 |
+
"model.layers.37.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
|
289 |
+
"model.layers.37.mlp.gate_proj.weight": "model-00005-of-00005.safetensors",
|
290 |
+
"model.layers.37.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
|
291 |
+
"model.layers.37.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
|
292 |
+
"model.layers.37.self_attn.k_proj.weight": "model-00005-of-00005.safetensors",
|
293 |
+
"model.layers.37.self_attn.o_proj.weight": "model-00005-of-00005.safetensors",
|
294 |
+
"model.layers.37.self_attn.q_proj.weight": "model-00005-of-00005.safetensors",
|
295 |
+
"model.layers.37.self_attn.v_proj.weight": "model-00005-of-00005.safetensors",
|
296 |
+
"model.layers.38.input_layernorm.weight": "model-00005-of-00005.safetensors",
|
297 |
+
"model.layers.38.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
|
298 |
+
"model.layers.38.mlp.gate_proj.weight": "model-00005-of-00005.safetensors",
|
299 |
+
"model.layers.38.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
|
300 |
+
"model.layers.38.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
|
301 |
+
"model.layers.38.self_attn.k_proj.weight": "model-00005-of-00005.safetensors",
|
302 |
+
"model.layers.38.self_attn.o_proj.weight": "model-00005-of-00005.safetensors",
|
303 |
+
"model.layers.38.self_attn.q_proj.weight": "model-00005-of-00005.safetensors",
|
304 |
+
"model.layers.38.self_attn.v_proj.weight": "model-00005-of-00005.safetensors",
|
305 |
+
"model.layers.39.input_layernorm.weight": "model-00005-of-00005.safetensors",
|
306 |
+
"model.layers.39.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
|
307 |
+
"model.layers.39.mlp.gate_proj.weight": "model-00005-of-00005.safetensors",
|
308 |
+
"model.layers.39.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
|
309 |
+
"model.layers.39.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
|
310 |
+
"model.layers.39.self_attn.k_proj.weight": "model-00005-of-00005.safetensors",
|
311 |
+
"model.layers.39.self_attn.o_proj.weight": "model-00005-of-00005.safetensors",
|
312 |
+
"model.layers.39.self_attn.q_proj.weight": "model-00005-of-00005.safetensors",
|
313 |
+
"model.layers.39.self_attn.v_proj.weight": "model-00005-of-00005.safetensors",
|
314 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00005.safetensors",
|
315 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
|
316 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
|
317 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
|
318 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
|
319 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
|
320 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
|
321 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
|
322 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
|
323 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00005.safetensors",
|
324 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
|
325 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
|
326 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
|
327 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
|
328 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
|
329 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
|
330 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
|
331 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
|
332 |
+
"model.layers.6.input_layernorm.weight": "model-00002-of-00005.safetensors",
|
333 |
+
"model.layers.6.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
|
334 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
|
335 |
+
"model.layers.6.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
|
336 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
|
337 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
|
338 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
|
339 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
|
340 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
|
341 |
+
"model.layers.7.input_layernorm.weight": "model-00002-of-00005.safetensors",
|
342 |
+
"model.layers.7.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
|
343 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
|
344 |
+
"model.layers.7.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
|
345 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
|
346 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
|
347 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
|
348 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
|
349 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
|
350 |
+
"model.layers.8.input_layernorm.weight": "model-00002-of-00005.safetensors",
|
351 |
+
"model.layers.8.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
|
352 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
|
353 |
+
"model.layers.8.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
|
354 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
|
355 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
|
356 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
|
357 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
|
358 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
|
359 |
+
"model.layers.9.input_layernorm.weight": "model-00002-of-00005.safetensors",
|
360 |
+
"model.layers.9.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
|
361 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
|
362 |
+
"model.layers.9.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
|
363 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
|
364 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
|
365 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
|
366 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
|
367 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
|
368 |
+
"model.norm.weight": "model-00005-of-00005.safetensors"
|
369 |
+
}
|
370 |
+
}
|
rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:08282b46825aa78d10fe10e3fea89555c5b5a691b261a3ddfd58fcb58370edff
|
3 |
+
size 15984
|
rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dbab71d98a3a9a92df82a6bba463947327c3a1bcf35cd9f4f46114641fc42dd9
|
3 |
+
size 15984
|
rng_state_2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:caac82d57d878d30219a4f9ec289a97ff90c53afc160b968f251b3fd3454b8d8
|
3 |
+
size 15984
|
rng_state_3.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:19762d2d370222b01817da11bbaa6665d542293373186d66f754e7246bb861ed
|
3 |
+
size 15984
|
rng_state_4.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:00c7508b346a7d3c5c23392845f1d013331114ade778794b76e919cb3ed5d33e
|
3 |
+
size 15984
|
rng_state_5.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b89de7d14dd20a191f56b74c816ef8b7fe5c171e31efbeadbf321c4539ed68c3
|
3 |
+
size 15984
|
rng_state_6.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1c71152053553e6e22d670fbc4fd7550bf8a046b54cad7b71869787986a6a42c
|
3 |
+
size 15984
|
rng_state_7.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4b67db12a26a26ffe03d9afc84a43857eb2e5b2fec2dd189653b415f74208190
|
3 |
+
size 15984
|
scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c130e41a1b4eae087a7ebe532bd523aa54ceca439537c8584456f337c4a466ab
|
3 |
+
size 1064
|
special_tokens_map.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "<|im_end|>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "<pad>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"unk_token": {
|
24 |
+
"content": "<unk>",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
}
|
30 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c367da14a113b5c624ba0fc049b60223b2db35b6923b210ddc994d4b58e9be9d
|
3 |
+
size 17078969
|
tokenizer_config.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
trainer_state.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e3fa17a5b21d43c1c0966c733ead377ee61a3f30c19bb3f50f59340e90cf2915
|
3 |
+
size 8376
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
zero_to_fp32.py
ADDED
@@ -0,0 +1,760 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example:
|
14 |
+
# python zero_to_fp32.py . output_dir/
|
15 |
+
# or
|
16 |
+
# python zero_to_fp32.py . output_dir/ --safe_serialization
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
import torch
|
20 |
+
import glob
|
21 |
+
import math
|
22 |
+
import os
|
23 |
+
import re
|
24 |
+
import gc
|
25 |
+
import json
|
26 |
+
import numpy as np
|
27 |
+
from tqdm import tqdm
|
28 |
+
from collections import OrderedDict
|
29 |
+
from dataclasses import dataclass
|
30 |
+
|
31 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
32 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
33 |
+
from deepspeed.utils import logger
|
34 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
35 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
36 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
37 |
+
|
38 |
+
|
39 |
+
@dataclass
|
40 |
+
class zero_model_state:
|
41 |
+
buffers: dict()
|
42 |
+
param_shapes: dict()
|
43 |
+
shared_params: list
|
44 |
+
ds_version: int
|
45 |
+
frozen_param_shapes: dict()
|
46 |
+
frozen_param_fragments: dict()
|
47 |
+
|
48 |
+
|
49 |
+
debug = 0
|
50 |
+
|
51 |
+
# load to cpu
|
52 |
+
device = torch.device('cpu')
|
53 |
+
|
54 |
+
|
55 |
+
def atoi(text):
|
56 |
+
return int(text) if text.isdigit() else text
|
57 |
+
|
58 |
+
|
59 |
+
def natural_keys(text):
|
60 |
+
'''
|
61 |
+
alist.sort(key=natural_keys) sorts in human order
|
62 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
63 |
+
(See Toothy's implementation in the comments)
|
64 |
+
'''
|
65 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
66 |
+
|
67 |
+
|
68 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
69 |
+
if not os.path.isdir(checkpoint_dir):
|
70 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
71 |
+
|
72 |
+
# there should be only one file
|
73 |
+
if zero_stage <= 2:
|
74 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
75 |
+
elif zero_stage == 3:
|
76 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
77 |
+
|
78 |
+
if not os.path.exists(file):
|
79 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
80 |
+
|
81 |
+
return file
|
82 |
+
|
83 |
+
|
84 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
85 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
86 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
87 |
+
|
88 |
+
if len(ckpt_files) == 0:
|
89 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
90 |
+
|
91 |
+
return ckpt_files
|
92 |
+
|
93 |
+
|
94 |
+
def get_optim_files(checkpoint_dir):
|
95 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
96 |
+
|
97 |
+
|
98 |
+
def get_model_state_files(checkpoint_dir):
|
99 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
100 |
+
|
101 |
+
|
102 |
+
def parse_model_states(files):
|
103 |
+
zero_model_states = []
|
104 |
+
for file in files:
|
105 |
+
state_dict = torch.load(file, map_location=device, weights_only=False)
|
106 |
+
|
107 |
+
if BUFFER_NAMES not in state_dict:
|
108 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
109 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
110 |
+
if debug:
|
111 |
+
print("Found buffers:", buffer_names)
|
112 |
+
|
113 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
114 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
115 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
116 |
+
|
117 |
+
# collect parameters that are included in param_shapes
|
118 |
+
param_names = []
|
119 |
+
for s in param_shapes:
|
120 |
+
for name in s.keys():
|
121 |
+
param_names.append(name)
|
122 |
+
|
123 |
+
# update with frozen parameters
|
124 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
125 |
+
if frozen_param_shapes is not None:
|
126 |
+
if debug:
|
127 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
128 |
+
param_names += list(frozen_param_shapes.keys())
|
129 |
+
|
130 |
+
# handle shared params
|
131 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
132 |
+
|
133 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
134 |
+
|
135 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
136 |
+
|
137 |
+
z_model_state = zero_model_state(buffers=buffers,
|
138 |
+
param_shapes=param_shapes,
|
139 |
+
shared_params=shared_params,
|
140 |
+
ds_version=ds_version,
|
141 |
+
frozen_param_shapes=frozen_param_shapes,
|
142 |
+
frozen_param_fragments=frozen_param_fragments)
|
143 |
+
zero_model_states.append(z_model_state)
|
144 |
+
|
145 |
+
return zero_model_states
|
146 |
+
|
147 |
+
|
148 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
149 |
+
total_files = len(files)
|
150 |
+
state_dicts = []
|
151 |
+
for f in tqdm(files, desc='Loading checkpoint shards'):
|
152 |
+
state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
|
153 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
154 |
+
# and also handle the case where it was already removed by another helper script
|
155 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
156 |
+
state_dicts.append(state_dict)
|
157 |
+
|
158 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
159 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
160 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
161 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
162 |
+
|
163 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
164 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
165 |
+
# use the max of the partition_count to get the dp world_size.
|
166 |
+
|
167 |
+
if type(world_size) is list:
|
168 |
+
world_size = max(world_size)
|
169 |
+
|
170 |
+
if world_size != total_files:
|
171 |
+
raise ValueError(
|
172 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
173 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
174 |
+
)
|
175 |
+
|
176 |
+
# the groups are named differently in each stage
|
177 |
+
if zero_stage <= 2:
|
178 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
179 |
+
elif zero_stage == 3:
|
180 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
181 |
+
else:
|
182 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
183 |
+
|
184 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
185 |
+
return zero_stage, world_size, fp32_flat_groups
|
186 |
+
|
187 |
+
|
188 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
189 |
+
"""
|
190 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
191 |
+
|
192 |
+
Args:
|
193 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
194 |
+
|
195 |
+
"""
|
196 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
197 |
+
|
198 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
199 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
200 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
201 |
+
|
202 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
203 |
+
|
204 |
+
zero_model_states = parse_model_states(model_files)
|
205 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
206 |
+
|
207 |
+
if zero_stage <= 2:
|
208 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
209 |
+
exclude_frozen_parameters)
|
210 |
+
elif zero_stage == 3:
|
211 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
212 |
+
exclude_frozen_parameters)
|
213 |
+
|
214 |
+
|
215 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
216 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
217 |
+
return
|
218 |
+
|
219 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
220 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
221 |
+
|
222 |
+
if debug:
|
223 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
224 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
225 |
+
|
226 |
+
wanted_params = len(frozen_param_shapes)
|
227 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
228 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
229 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
230 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
231 |
+
|
232 |
+
total_params = 0
|
233 |
+
total_numel = 0
|
234 |
+
for name, shape in frozen_param_shapes.items():
|
235 |
+
total_params += 1
|
236 |
+
unpartitioned_numel = shape.numel()
|
237 |
+
total_numel += unpartitioned_numel
|
238 |
+
|
239 |
+
state_dict[name] = frozen_param_fragments[name]
|
240 |
+
|
241 |
+
if debug:
|
242 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
243 |
+
|
244 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
245 |
+
|
246 |
+
|
247 |
+
def _has_callable(obj, fn):
|
248 |
+
attr = getattr(obj, fn, None)
|
249 |
+
return callable(attr)
|
250 |
+
|
251 |
+
|
252 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
253 |
+
param_shapes = zero_model_states[0].param_shapes
|
254 |
+
|
255 |
+
# Reconstruction protocol:
|
256 |
+
#
|
257 |
+
# XXX: document this
|
258 |
+
|
259 |
+
if debug:
|
260 |
+
for i in range(world_size):
|
261 |
+
for j in range(len(fp32_flat_groups[0])):
|
262 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
263 |
+
|
264 |
+
# XXX: memory usage doubles here (zero2)
|
265 |
+
num_param_groups = len(fp32_flat_groups[0])
|
266 |
+
merged_single_partition_of_fp32_groups = []
|
267 |
+
for i in range(num_param_groups):
|
268 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
269 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
270 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
271 |
+
avail_numel = sum(
|
272 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
273 |
+
|
274 |
+
if debug:
|
275 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
276 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
277 |
+
# not asserting if there is a mismatch due to possible padding
|
278 |
+
print(f"Have {avail_numel} numels to process.")
|
279 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
280 |
+
|
281 |
+
# params
|
282 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
283 |
+
# out-of-core computing solution
|
284 |
+
total_numel = 0
|
285 |
+
total_params = 0
|
286 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
287 |
+
offset = 0
|
288 |
+
avail_numel = full_single_fp32_vector.numel()
|
289 |
+
for name, shape in shapes.items():
|
290 |
+
|
291 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
292 |
+
total_numel += unpartitioned_numel
|
293 |
+
total_params += 1
|
294 |
+
|
295 |
+
if debug:
|
296 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
297 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
298 |
+
offset += unpartitioned_numel
|
299 |
+
|
300 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
301 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
302 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
303 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
304 |
+
align_to = 2 * world_size
|
305 |
+
|
306 |
+
def zero2_align(x):
|
307 |
+
return align_to * math.ceil(x / align_to)
|
308 |
+
|
309 |
+
if debug:
|
310 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
311 |
+
|
312 |
+
offset = zero2_align(offset)
|
313 |
+
avail_numel = zero2_align(avail_numel)
|
314 |
+
|
315 |
+
if debug:
|
316 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
317 |
+
|
318 |
+
# Sanity check
|
319 |
+
if offset != avail_numel:
|
320 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
321 |
+
|
322 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
323 |
+
|
324 |
+
|
325 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
326 |
+
exclude_frozen_parameters):
|
327 |
+
state_dict = OrderedDict()
|
328 |
+
|
329 |
+
# buffers
|
330 |
+
buffers = zero_model_states[0].buffers
|
331 |
+
state_dict.update(buffers)
|
332 |
+
if debug:
|
333 |
+
print(f"added {len(buffers)} buffers")
|
334 |
+
|
335 |
+
if not exclude_frozen_parameters:
|
336 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
337 |
+
|
338 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
339 |
+
|
340 |
+
# recover shared parameters
|
341 |
+
for pair in zero_model_states[0].shared_params:
|
342 |
+
if pair[1] in state_dict:
|
343 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
344 |
+
|
345 |
+
return state_dict
|
346 |
+
|
347 |
+
|
348 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
349 |
+
remainder = unpartitioned_numel % world_size
|
350 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
351 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
352 |
+
return partitioned_numel, padding_numel
|
353 |
+
|
354 |
+
|
355 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
356 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
357 |
+
return
|
358 |
+
|
359 |
+
if debug:
|
360 |
+
for i in range(world_size):
|
361 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
362 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
363 |
+
|
364 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
365 |
+
wanted_params = len(frozen_param_shapes)
|
366 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
367 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
368 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
369 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
370 |
+
|
371 |
+
total_params = 0
|
372 |
+
total_numel = 0
|
373 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
374 |
+
total_params += 1
|
375 |
+
unpartitioned_numel = shape.numel()
|
376 |
+
total_numel += unpartitioned_numel
|
377 |
+
|
378 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
379 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
380 |
+
|
381 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
382 |
+
|
383 |
+
if debug:
|
384 |
+
print(
|
385 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
386 |
+
)
|
387 |
+
|
388 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
389 |
+
|
390 |
+
|
391 |
+
class GatheredTensor:
|
392 |
+
"""
|
393 |
+
A pseudo tensor that collects partitioned weights.
|
394 |
+
It is more memory efficient when there are multiple groups.
|
395 |
+
"""
|
396 |
+
|
397 |
+
def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
|
398 |
+
self.flat_groups = flat_groups
|
399 |
+
self.flat_groups_offset = flat_groups_offset
|
400 |
+
self.offset = offset
|
401 |
+
self.partitioned_numel = partitioned_numel
|
402 |
+
self.shape = shape
|
403 |
+
self.dtype = self.flat_groups[0][0].dtype
|
404 |
+
|
405 |
+
def contiguous(self):
|
406 |
+
"""
|
407 |
+
Merge partitioned weights from flat_groups into a single tensor.
|
408 |
+
"""
|
409 |
+
end_idx = self.offset + self.partitioned_numel
|
410 |
+
world_size = len(self.flat_groups)
|
411 |
+
pad_flat_param_chunks = []
|
412 |
+
|
413 |
+
for rank_i in range(world_size):
|
414 |
+
# for each rank, we need to collect weights from related group/groups
|
415 |
+
flat_groups_at_rank_i = self.flat_groups[rank_i]
|
416 |
+
start_group_id = None
|
417 |
+
end_group_id = None
|
418 |
+
for group_id in range(len(self.flat_groups_offset)):
|
419 |
+
if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
|
420 |
+
start_group_id = group_id
|
421 |
+
if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
|
422 |
+
end_group_id = group_id
|
423 |
+
break
|
424 |
+
# collect weights from related group/groups
|
425 |
+
for group_id in range(start_group_id, end_group_id + 1):
|
426 |
+
flat_tensor = flat_groups_at_rank_i[group_id]
|
427 |
+
start_offset = self.offset - self.flat_groups_offset[group_id]
|
428 |
+
end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
|
429 |
+
pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
|
430 |
+
|
431 |
+
# collect weights from all ranks
|
432 |
+
pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
|
433 |
+
param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
|
434 |
+
return param
|
435 |
+
|
436 |
+
|
437 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
438 |
+
param_shapes = zero_model_states[0].param_shapes
|
439 |
+
avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
|
440 |
+
|
441 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
442 |
+
# param, re-consolidating each param, while dealing with padding if any
|
443 |
+
|
444 |
+
# merge list of dicts, preserving order
|
445 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
446 |
+
|
447 |
+
if debug:
|
448 |
+
for i in range(world_size):
|
449 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
450 |
+
|
451 |
+
wanted_params = len(param_shapes)
|
452 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
453 |
+
# not asserting if there is a mismatch due to possible padding
|
454 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
455 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
456 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
457 |
+
|
458 |
+
# params
|
459 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
460 |
+
# out-of-core computing solution
|
461 |
+
offset = 0
|
462 |
+
total_numel = 0
|
463 |
+
total_params = 0
|
464 |
+
flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
|
465 |
+
for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
|
466 |
+
unpartitioned_numel = shape.numel()
|
467 |
+
total_numel += unpartitioned_numel
|
468 |
+
total_params += 1
|
469 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
470 |
+
|
471 |
+
if debug:
|
472 |
+
print(
|
473 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
474 |
+
)
|
475 |
+
|
476 |
+
# memory efficient tensor
|
477 |
+
tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
|
478 |
+
state_dict[name] = tensor
|
479 |
+
offset += partitioned_numel
|
480 |
+
|
481 |
+
offset *= world_size
|
482 |
+
|
483 |
+
# Sanity check
|
484 |
+
if offset != avail_numel:
|
485 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
486 |
+
|
487 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
488 |
+
|
489 |
+
|
490 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
491 |
+
exclude_frozen_parameters):
|
492 |
+
state_dict = OrderedDict()
|
493 |
+
|
494 |
+
# buffers
|
495 |
+
buffers = zero_model_states[0].buffers
|
496 |
+
state_dict.update(buffers)
|
497 |
+
if debug:
|
498 |
+
print(f"added {len(buffers)} buffers")
|
499 |
+
|
500 |
+
if not exclude_frozen_parameters:
|
501 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
502 |
+
|
503 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
504 |
+
|
505 |
+
# recover shared parameters
|
506 |
+
for pair in zero_model_states[0].shared_params:
|
507 |
+
if pair[1] in state_dict:
|
508 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
509 |
+
|
510 |
+
return state_dict
|
511 |
+
|
512 |
+
|
513 |
+
def to_torch_tensor(state_dict, return_empty_tensor=False):
|
514 |
+
"""
|
515 |
+
Convert state_dict of GatheredTensor to torch tensor
|
516 |
+
"""
|
517 |
+
torch_state_dict = {}
|
518 |
+
converted_tensors = {}
|
519 |
+
for name, tensor in state_dict.items():
|
520 |
+
tensor_id = id(tensor)
|
521 |
+
if tensor_id in converted_tensors: # shared tensors
|
522 |
+
shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
|
523 |
+
torch_state_dict[name] = shared_tensor
|
524 |
+
else:
|
525 |
+
converted_tensors[tensor_id] = name
|
526 |
+
if return_empty_tensor:
|
527 |
+
torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
|
528 |
+
else:
|
529 |
+
torch_state_dict[name] = tensor.contiguous()
|
530 |
+
return torch_state_dict
|
531 |
+
|
532 |
+
|
533 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
534 |
+
tag=None,
|
535 |
+
exclude_frozen_parameters=False,
|
536 |
+
lazy_mode=False):
|
537 |
+
"""
|
538 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
539 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
540 |
+
via a model hub.
|
541 |
+
|
542 |
+
Args:
|
543 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
544 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
545 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
546 |
+
- ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
|
547 |
+
Convert the pesduo tensor to torch tensor by ``.contiguous()``
|
548 |
+
|
549 |
+
Returns:
|
550 |
+
- pytorch ``state_dict``
|
551 |
+
|
552 |
+
A typical usage might be ::
|
553 |
+
|
554 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
555 |
+
# do the training and checkpoint saving
|
556 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
557 |
+
model = model.cpu() # move to cpu
|
558 |
+
model.load_state_dict(state_dict)
|
559 |
+
# submit to model hub or save the model to share with others
|
560 |
+
|
561 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
562 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
563 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
564 |
+
|
565 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
566 |
+
|
567 |
+
Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
|
568 |
+
You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
569 |
+
the checkpoint. Or you can load state_dict in lazy mode ::
|
570 |
+
|
571 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
572 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
|
573 |
+
for name, lazy_tensor in state_dict.item():
|
574 |
+
tensor = lazy_tensor.contiguous() # to cpu
|
575 |
+
print(name, tensor)
|
576 |
+
# del tensor to release memory if it no longer in use
|
577 |
+
"""
|
578 |
+
if tag is None:
|
579 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
580 |
+
if os.path.isfile(latest_path):
|
581 |
+
with open(latest_path, 'r') as fd:
|
582 |
+
tag = fd.read().strip()
|
583 |
+
else:
|
584 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
585 |
+
|
586 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
587 |
+
|
588 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
589 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
590 |
+
|
591 |
+
state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
592 |
+
if lazy_mode:
|
593 |
+
return state_dict
|
594 |
+
else:
|
595 |
+
return to_torch_tensor(state_dict)
|
596 |
+
|
597 |
+
|
598 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
|
599 |
+
output_dir,
|
600 |
+
max_shard_size="5GB",
|
601 |
+
safe_serialization=False,
|
602 |
+
tag=None,
|
603 |
+
exclude_frozen_parameters=False):
|
604 |
+
"""
|
605 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
606 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
607 |
+
|
608 |
+
Args:
|
609 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
610 |
+
- ``output_dir``: directory to the pytorch fp32 state_dict output files
|
611 |
+
- ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
|
612 |
+
- ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
613 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
614 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
615 |
+
"""
|
616 |
+
|
617 |
+
# Dependency pre-check
|
618 |
+
if safe_serialization:
|
619 |
+
try:
|
620 |
+
from safetensors.torch import save_file
|
621 |
+
except ImportError:
|
622 |
+
print('If you want to use `safe_serialization`, please `pip install safetensors`')
|
623 |
+
raise
|
624 |
+
if max_shard_size is not None:
|
625 |
+
try:
|
626 |
+
from huggingface_hub import split_torch_state_dict_into_shards
|
627 |
+
except ImportError:
|
628 |
+
print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
|
629 |
+
raise
|
630 |
+
|
631 |
+
# Convert zero checkpoint to state_dict
|
632 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
633 |
+
tag,
|
634 |
+
exclude_frozen_parameters,
|
635 |
+
lazy_mode=True)
|
636 |
+
|
637 |
+
# Shard the model if it is too big.
|
638 |
+
weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
|
639 |
+
if max_shard_size is not None:
|
640 |
+
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
641 |
+
# an memory-efficient approach for sharding
|
642 |
+
empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
|
643 |
+
state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
|
644 |
+
filename_pattern=filename_pattern,
|
645 |
+
max_shard_size=max_shard_size)
|
646 |
+
else:
|
647 |
+
from collections import namedtuple
|
648 |
+
StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
|
649 |
+
state_dict_split = StateDictSplit(is_sharded=False,
|
650 |
+
filename_to_tensors={weights_name: list(state_dict.keys())})
|
651 |
+
|
652 |
+
# Save the model by shard
|
653 |
+
os.makedirs(output_dir, exist_ok=True)
|
654 |
+
filename_to_tensors = state_dict_split.filename_to_tensors.items()
|
655 |
+
for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
|
656 |
+
shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
|
657 |
+
shard_state_dict = to_torch_tensor(shard_state_dict)
|
658 |
+
output_path = os.path.join(output_dir, shard_file)
|
659 |
+
if safe_serialization:
|
660 |
+
save_file(shard_state_dict, output_path, metadata={"format": "pt"})
|
661 |
+
else:
|
662 |
+
torch.save(shard_state_dict, output_path)
|
663 |
+
# release the memory of current shard
|
664 |
+
for tensor_name in list(shard_state_dict.keys()):
|
665 |
+
del state_dict[tensor_name]
|
666 |
+
del shard_state_dict[tensor_name]
|
667 |
+
del shard_state_dict
|
668 |
+
gc.collect()
|
669 |
+
|
670 |
+
# Save index if sharded
|
671 |
+
if state_dict_split.is_sharded:
|
672 |
+
index = {
|
673 |
+
"metadata": state_dict_split.metadata,
|
674 |
+
"weight_map": state_dict_split.tensor_to_filename,
|
675 |
+
}
|
676 |
+
save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
|
677 |
+
save_index_file = os.path.join(output_dir, save_index_file)
|
678 |
+
with open(save_index_file, "w", encoding="utf-8") as f:
|
679 |
+
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
680 |
+
f.write(content)
|
681 |
+
|
682 |
+
|
683 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
684 |
+
"""
|
685 |
+
1. Put the provided model to cpu
|
686 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
687 |
+
3. Load it into the provided model
|
688 |
+
|
689 |
+
Args:
|
690 |
+
- ``model``: the model object to update
|
691 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
692 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
693 |
+
|
694 |
+
Returns:
|
695 |
+
- ``model`: modified model
|
696 |
+
|
697 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
698 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
699 |
+
conveniently placed for you in the checkpoint folder.
|
700 |
+
|
701 |
+
A typical usage might be ::
|
702 |
+
|
703 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
704 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
705 |
+
# submit to model hub or save the model to share with others
|
706 |
+
|
707 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
708 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
709 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
710 |
+
|
711 |
+
"""
|
712 |
+
logger.info(f"Extracting fp32 weights")
|
713 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
714 |
+
|
715 |
+
logger.info(f"Overwriting model with fp32 weights")
|
716 |
+
model = model.cpu()
|
717 |
+
model.load_state_dict(state_dict, strict=False)
|
718 |
+
|
719 |
+
return model
|
720 |
+
|
721 |
+
|
722 |
+
if __name__ == "__main__":
|
723 |
+
parser = argparse.ArgumentParser()
|
724 |
+
parser.add_argument("checkpoint_dir",
|
725 |
+
type=str,
|
726 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
727 |
+
parser.add_argument("output_dir",
|
728 |
+
type=str,
|
729 |
+
help="directory to the pytorch fp32 state_dict output files"
|
730 |
+
"(e.g. path/checkpoint-12-output/)")
|
731 |
+
parser.add_argument(
|
732 |
+
"--max_shard_size",
|
733 |
+
type=str,
|
734 |
+
default="5GB",
|
735 |
+
help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
|
736 |
+
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
|
737 |
+
"We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
|
738 |
+
"without CPU OOM issues.")
|
739 |
+
parser.add_argument(
|
740 |
+
"--safe_serialization",
|
741 |
+
default=False,
|
742 |
+
action='store_true',
|
743 |
+
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
|
744 |
+
parser.add_argument("-t",
|
745 |
+
"--tag",
|
746 |
+
type=str,
|
747 |
+
default=None,
|
748 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
749 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
750 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
751 |
+
args = parser.parse_args()
|
752 |
+
|
753 |
+
debug = args.debug
|
754 |
+
|
755 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
756 |
+
args.output_dir,
|
757 |
+
max_shard_size=args.max_shard_size,
|
758 |
+
safe_serialization=args.safe_serialization,
|
759 |
+
tag=args.tag,
|
760 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|