taohu88 commited on
Commit
079c13e
·
1 Parent(s): 6488166

Upload PPO LunarLander-v2 trained agent

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 275.91 +/- 20.24
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 254.71 +/- 17.31
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fecfaf2e830>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fecfaf2e8c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fecfaf2e950>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fecfaf2e9e0>", "_build": "<function ActorCriticPolicy._build at 0x7fecfaf2ea70>", "forward": "<function ActorCriticPolicy.forward at 0x7fecfaf2eb00>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fecfaf2eb90>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fecfaf2ec20>", "_predict": "<function ActorCriticPolicy._predict at 0x7fecfaf2ecb0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fecfaf2ed40>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fecfaf2edd0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fecfaf2ee60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fecfaf2a040>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2031616, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1689044279818201081, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM2IA72/jFE+qHTqPf2Xlr6J8Fw5kZQUPQAAAAAAAAAAJgjdPXk/nD9qNw8/dRYSvxgtlz0bmm4+AAAAAAAAAADNMcA8w5EWur2fsD3Qst4xKUfnu25C/TMAAIA/AACAP80qg7xWZrY/M1DJvsyI7j0U8zc8+CaBPAAAAAAAAAAAmiYUvgNZ0z7c4JU+tqbDvvdX8bzfToo9AAAAAAAAAABmAt48FH6Gut63r7Wzut+w+2cNO9JV5zQAAIA/AACAP7Nbar20IIE+4pAnPtk4mb4mLYY81rwePQAAAAAAAAAAzZEkPUl8pD9K9VE+GZDmvk/Etj2RVaw9AAAAAAAAAABmeBs+N0elPoXJzb4Fjcm+YkdYvT4ICL4AAAAAAAAAAECFjL2cwmm824LlPe1L273awuk6wkm1OwAAgD8AAIA/LexiPgE6hz+YEoI+KhzhvuIJtj5ggLi8AAAAAAAAAABmzAW94UyMuuU/Zzr+IGs14/Rwug79g7kAAIA/AACAP5qdUT6+XtE+0FfuvYIMv7712Ak+5TxfvQAAAAAAAAAAZg3UvJRXlD2vvCI+oqynvhp5+Ty7HSe8AAAAAAAAAACajcW7Pa0Nu8f5Az1Sx/A7A9tIvCiV2zwAAIA/AACAPzOA2LxxQAU+YhALu//Jyb627Mu8d0zKvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV6AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHJMR4IKMNuMAWyUS92MAXSUR0Cguhy/KyOadX2UKGgGR0BwNAZk078vaAdL4GgIR0CgujLncL0BdX2UKGgGR0BxGAN3GGVSaAdL7GgIR0CgujbRF7UodX2UKGgGR0BwTjHktEofaAdL4GgIR0CguoUjLSuydX2UKGgGR0Bx0ap97WupaAdL82gIR0Cgut9L6DXfdX2UKGgGR0BwolqmCROlaAdL1GgIR0CguzaP8yeqdX2UKGgGR0ByVukadc0MaAdL1mgIR0Cgu4pJwsGxdX2UKGgGR0BuXE7wKBuoaAdL5mgIR0Cgu7RNqQA/dX2UKGgGR0BwAJFz+3pfaAdL6WgIR0Cgu/eFlCkXdX2UKGgGR0BzTFEy+HrRaAdL/GgIR0CgvB26ClJpdX2UKGgGR0Byh2PXCj1xaAdL+2gIR0CgvCwqAjIJdX2UKGgGR0BxM9suWa+faAdL5WgIR0CgvEG7aqS6dX2UKGgGR0Bx8ow7DEWJaAdNtQFoCEdAoLyPReC04XV9lChoBkdAbqn71Iy0r2gHS85oCEdAoLy/Pomoi3V9lChoBkdAcl3FPznRs2gHS/hoCEdAoLzYX9BKMHV9lChoBkdAcXgotL+PzWgHS+VoCEdAoLzbdi2Dx3V9lChoBkdAcJwp2ll9SmgHS+BoCEdAoL0PU6PsA3V9lChoBkdAcmqUMG5c1WgHS+RoCEdAoL0x7Z39rHV9lChoBkdAc0bOAAhjfGgHS/toCEdAoL2BeRgZ0nV9lChoBkdAckWnxJ/XoWgHTQMBaAhHQKC98Ij4YaZ1fZQoaAZHQHN5FUdaMaVoB0vyaAhHQKC+E2AG0NV1fZQoaAZHQHDp1BD5TIhoB0vcaAhHQKC+G1c+qzZ1fZQoaAZHQHK+fI8yN4toB0vJaAhHQKC+Sx/ustF1fZQoaAZHQHDEbBGhEjRoB0vnaAhHQKC+gcQyylh1fZQoaAZHQHB3NoJzDGdoB0vqaAhHQKC/KxxDLKV1fZQoaAZHQHPhxPKuB+ZoB0vvaAhHQKC/Z0fYBeZ1fZQoaAZHQHHiWZAprk9oB00KAWgIR0Cgv3qWcBludX2UKGgGR0BwNGbUgB91aAdLzmgIR0Cgv356+nIidX2UKGgGR0BuRDNUwSJ1aAdLxmgIR0Cgv4HG8274dX2UKGgGR0BvjiDkELYxaAdLyWgIR0Cgv7jaGpMpdX2UKGgGR0BzGzVsk6cRaAdL/WgIR0Cgv+nCGetkdX2UKGgGR0Bw89EVnEl3aAdL7WgIR0Cgv/1c2R7rdX2UKGgGR0Bzgrn/1g6VaAdL6WgIR0CgwEZEUj9odX2UKGgGR0Bx7pP8AJb/aAdNPgFoCEdAoMBWpZOi4HV9lChoBkdAbxClTm4iHWgHS+doCEdAoMCJYzSCv3V9lChoBkdAbREafjCHh2gHS9toCEdAoMDLWTX8O3V9lChoBkdAcaecTrVvuWgHS9hoCEdAoMDrRnezlnV9lChoBkdAb6G/3WWhRWgHS+JoCEdAoME+ITGo73V9lChoBkdAcnxF1B+nZWgHS/VoCEdAoMFGCyyD7XV9lChoBkdAcKvdWyTpxGgHS91oCEdAoMFmFpPAPHV9lChoBkdAc0f7nPmgamgHS9NoCEdAoMIvoouwo3V9lChoBkdAcKlhPTG5tmgHS+loCEdAoMI1lI3BHnV9lChoBkdAcakRNATqS2gHS8xoCEdAoMJhO1v2oXV9lChoBkdAcVR/B3zMA2gHS+ZoCEdAoMJp/ViF03V9lChoBkdAcMRjRUm2LGgHS+JoCEdAoMJzPGACn3V9lChoBkdAcYJLXcxj8WgHS+1oCEdAoMKVIPK+z3V9lChoBkdAcaPBLf1pTWgHS9toCEdAoMLEQumJnHV9lChoBkdAbhlx+8XenGgHS+ZoCEdAoML8NlRP43V9lChoBkdAb1iy5Zr57GgHS91oCEdAoMMwfMfRu3V9lChoBkdAcpgSzPa+OGgHS9doCEdAoMMuw9q1xHV9lChoBkdAcSokwevIO2gHS+RoCEdAoMONjy4FzXV9lChoBkdAb3DZntfG/GgHS9poCEdAoMO3Y+Sr53V9lChoBkdAcW5TH80k4WgHS8doCEdAoMPz2OAAhnV9lChoBkdAc2QMRHww02gHTQABaAhHQKDEVWJ79ht1fZQoaAZHQHK6dcjZ+QVoB0vxaAhHQKDEdIHTqjd1fZQoaAZHQHP+9+CsfaJoB0v9aAhHQKDEyyCWeH11fZQoaAZHQHCZns5XEIhoB0veaAhHQKDFNkPMB6t1fZQoaAZHQHAHKGHpKSRoB0vSaAhHQKDFNfb9If91fZQoaAZHQHEjgsoUi6hoB0vaaAhHQKDFaDFId2h1fZQoaAZHQHEl4jB2wFFoB0vpaAhHQKDFaBuGbkR1fZQoaAZHQHLruxnnMdNoB0vfaAhHQKDFcpDu0C11fZQoaAZHQHAyUL6UJOZoB0vIaAhHQKDFgyRjjJd1fZQoaAZHQHHa76Hj6vdoB0vtaAhHQKDFzbr1M/R1fZQoaAZHQHJK14keIVNoB0vbaAhHQKDF90J4SpR1fZQoaAZHQHEBdX5nDixoB0vaaAhHQKDGH6eGwid1fZQoaAZHQHNnSx7iQ1doB0vZaAhHQKDGGpqASWZ1fZQoaAZHQHKJ/a11GLFoB0vOaAhHQKDGUajN6gN1fZQoaAZHQHOJJjH4oJBoB0v+aAhHQKDHChGpdbB1fZQoaAZHQHMP7xAjY7JoB0vyaAhHQKDHHoA4n4R1fZQoaAZHQG52Wrn1WbRoB0vXaAhHQKDHaRFqi491fZQoaAZHQHJUQ/cFhXtoB0vraAhHQKDHnFDv3Jx1fZQoaAZHQHFi083dbgVoB0vYaAhHQKDH8mLtNSJ1fZQoaAZHQG6NWFN+LFZoB0vWaAhHQKDIbR51Ng11fZQoaAZHQHCZ9dZ7ojhoB0vQaAhHQKDIkLYPGyZ1fZQoaAZHQG/jH3Dej21oB0vQaAhHQKDIkOf/WDp1fZQoaAZHQHAiR8IAwPBoB0vsaAhHQKDI3okAxSJ1fZQoaAZHQHHLLy+YdABoB0voaAhHQKDJLCdBjWl1fZQoaAZHQHDe4G6f8MxoB0vOaAhHQKDJZueBg/l1fZQoaAZHQHEGFO0svqVoB0v8aAhHQKDJh65XlsB1fZQoaAZHQHDvY2GZeAxoB0vTaAhHQKDJwgJ1JUZ1fZQoaAZHQG+H3iaRZEFoB0v1aAhHQKDJ8JMQEp11fZQoaAZHQHJrsbBGhEloB00BAWgIR0CgywW0zCUHdX2UKGgGR0Bx5jUlRgqmaAdNEwFoCEdAoMsMwrUb1nV9lChoBkdAcSmZi/fwZ2gHS85oCEdAoMtjs2NvO3V9lChoBkdAcasM7EHdGmgHS+RoCEdAoMuzklu3t3V9lChoBkdAb0zH/cWTHWgHS9loCEdAoMwQqRU3oHV9lChoBkdAcZgy7f51vGgHS+loCEdAoMwxGnXNDHV9lChoBkdAcuQTXJ5miGgHS9xoCEdAoMx4ZZSvT3V9lChoBkdAb/Ht6X0GvGgHS8hoCEdAoMyQYaYNRXV9lChoBkdAcs7DbrTpgWgHS9xoCEdAoM0jZzxPPHV9lChoBkdAbsjgk1Mue2gHS9ZoCEdAoM1ffKp1inV9lChoBkdAb7tRCx/us2gHS+5oCEdAoM2Qqur6tXV9lChoBkdAcP4uuzQeFWgHS8toCEdAoM2rDye7MHV9lChoBkdAciF8mKIi1WgHS9loCEdAoM3AJRfnfXV9lChoBkdAcChntfG+9WgHS81oCEdAoM3VHFxXGXV9lChoBkdAcU9M1TBInWgHS9poCEdAoM5COR1YAHV9lChoBkdAcrYGKyfL92gHTQUBaAhHQKDPXPfKp1l1fZQoaAZHQHMoRhUipvRoB0vaaAhHQKDP+kN4JNV1fZQoaAZHQHHkC4SYgJVoB0vtaAhHQKDQD41P3zt1fZQoaAZHQHM5KO5rgwZoB0v5aAhHQKDQXKQJXyR1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.95, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7970aee8de10>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7970aee8dea0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7970aee8df30>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7970aee8dfc0>", "_build": "<function ActorCriticPolicy._build at 0x7970aee8e050>", "forward": "<function ActorCriticPolicy.forward at 0x7970aee8e0e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7970aee8e170>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7970aee8e200>", "_predict": "<function ActorCriticPolicy._predict at 0x7970aee8e290>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7970aee8e320>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7970aee8e3b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7970aee8e440>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7970aee86580>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690159022592695750, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEB9iL3o+iw/BNy0vb8Zrr7frAC9Ekg/PQAAAAAAAAAA5Ym2vnYKOT+uslo+4r1xvhjjcL5gl1k+AAAAAAAAAABmTvY7axbdPWs1cLzXa46+LhNGvf7ZXD0AAAAAAAAAAMAPHD5uo/W8EqkFPqLlBLqLc5Y8nnLMvQAAgD8AAIA/Zuatu8+AGby5B4K7HE62PPGtgT1F15W9AACAPwAAgD+z0AM9xcL9PO+jl7wU0wq+JdTIvGv6HbwAAAAAAAAAAFqhgL31pRQ/64S1vb18V74FM4i95BcBvgAAAAAAAAAAUJJVvg/fST8p7cG9D1qtvoqxGL7D8Sw+AAAAAAAAAAAzA1m8FAirulv/3bowcJI8s/H0Oy0lfr0AAIA/AACAP830/TyphR89rkoXPVylOr5jt8Q8rlkjPQAAAAAAAAAAQKWOPQRJpT93hJk+FCeAvpTBmj1bchw+AAAAAAAAAAAzg7s8xGazP0M1oT77Jw6+g8G9uYiuRD0AAAAAAAAAAM3EhrvFEDw/CN5DPU9whb4QuK88vVCuvAAAAAAAAAAAAGzUO6XMvj+GB8w8TQ7IvZSKQr0irEC8AAAAAAAAAABmBAC9j0h4PfTHsz18TRG+2O0qvc9BtDwAAAAAAAAAABqsh72PLnu6sP45O1XyaDnID645gkfbuQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVNgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG5ke5Fw1iyMAWyUTT0BjAF0lEdAlWLh3eN1hnV9lChoBkdAckF9JjDsMWgHTSUBaAhHQJVkJeiSJTF1fZQoaAZHQHHVlafSQYFoB00iAWgIR0CVZEXzUZvUdX2UKGgGR0BtlDB2wFC+aAdNJQFoCEdAlWWFVPva13V9lChoBkdAb1UKCQLeAWgHTQ8BaAhHQJVmoe2d/ax1fZQoaAZHQHA4Ovt+kQBoB00VAWgIR0CVZ1UKArhBdX2UKGgGR0ByAmrxRVIaaAdL/GgIR0CVZ/rI5o4/dX2UKGgGR0BvuYvi97F9aAdNKAFoCEdAlWgtIGyHEnV9lChoBkdAbl0M85jpcGgHTUMBaAhHQJVoLMB6rvN1fZQoaAZHQHEyGyxA0KtoB01PAWgIR0CVaGO32EkCdX2UKGgGR0BuZXAIppevaAdNDwFoCEdAlWi6y8jAz3V9lChoBkdAUh02LpA2RGgHS8BoCEdAlWjgeNkvsnV9lChoBkdAbu3G4qgAZWgHTTcBaAhHQJVrMxREWqN1fZQoaAZHQG4Z/nW8RL9oB00PAWgIR0CVa+hEBsAOdX2UKGgGR0Bxv59+gDigaAdNKwFoCEdAlWwdC7btZ3V9lChoBkdAcQXKBd2Pk2gHTUUBaAhHQJVsSIvalDZ1fZQoaAZHQG3ctSZSeiBoB00FAWgIR0CVbOT37DVIdX2UKGgGR0BEK8Kw6hg3aAdL9GgIR0CVban9vS+hdX2UKGgGR0BtmCnUDuBuaAdNIQFoCEdAlW3z/+85CHV9lChoBkdAcpCfozN2T2gHTQ8BaAhHQJVvnEaVD8d1fZQoaAZHQHBdTDO1OTJoB00eAWgIR0CVcNK5TZQIdX2UKGgGR0BtTfxnWattaAdNKwFoCEdAlXH05EMLGHV9lChoBkdAcnMpSrHU+mgHTScBaAhHQJVyAWFev6l1fZQoaAZHQHFHupXIU8FoB00VAWgIR0CVcgENOM2ndX2UKGgGR0Bvh8GX5WRzaAdNHQFoCEdAlXJujynUD3V9lChoBkdAb+UTV2A5JmgHTUoBaAhHQJVzHeMyaeB1fZQoaAZHQExn9H+ZPVNoB0vaaAhHQJVzjn0TURZ1fZQoaAZHQHJQt+PRzBBoB0v8aAhHQJVzuO801qF1fZQoaAZHQHKAjqnm7rdoB013AWgIR0CVdKnQ6ZH/dX2UKGgGR0BxzH1kDp1SaAdNHAFoCEdAlXZ3gUDdQHV9lChoBkdAcYXL7Gecx2gHTTsBaAhHQJV2dDeCTU11fZQoaAZHQHJttwBHTZxoB01BAWgIR0CVdxAeaKDTdX2UKGgGR0BvoMVN5+pgaAdNLwFoCEdAlXfwggX/HnV9lChoBkdAbSpAjY7JXGgHTSwBaAhHQJV4GarmyPd1fZQoaAZHQHEpFPva11JoB00cAWgIR0CVeSOM2m52dX2UKGgGR0Bw4jaAWi1zaAdNGwFoCEdAlXpFEuxrz3V9lChoBkdAcqmExIre7GgHTQcBaAhHQJV7JGtp22Z1fZQoaAZHQHBlBmseXAxoB00VAWgIR0CVeyzIFNcodX2UKGgGR0Bwpl6JIlMRaAdNMAFoCEdAlXwdk8Rtg3V9lChoBkdAcQcews5GSmgHTQ4BaAhHQJV8JWJaaCt1fZQoaAZHQHC11ZcLSeBoB00EAWgIR0CVfHVC5VfedX2UKGgGR0BuFl29tdiVaAdNDwFoCEdAlXyfdIoVmHV9lChoBkdAcatoNd7fHmgHTVQBaAhHQJV9K1w5vLp1fZQoaAZHQF8QLCvX9R9oB03oA2gIR0CVfUdy1eBydX2UKGgGR0Bw7qavzOHGaAdNBQFoCEdAlX1olUp/gHV9lChoBkdAcaJ0se4kNWgHTQYBaAhHQJWSANG3F1l1fZQoaAZHQFEehFmWdEtoB0vcaAhHQJWSDVe8f3h1fZQoaAZHQG89NMPBi1BoB00fAWgIR0CVkr7ngYP5dX2UKGgGR0Byc9Dst03gaAdNDQFoCEdAlZK6Dwpe/3V9lChoBkdAcsMfkWAPNGgHTRoBaAhHQJWT9g/keZJ1fZQoaAZHQHDfpVwPy09oB0v/aAhHQJWV9k8Rtgt1fZQoaAZHQHDgGys0YTFoB006AWgIR0CVlhFHrhR7dX2UKGgGR0BsrLy4FzMiaAdNCwFoCEdAlZZlwYLsr3V9lChoBkdAct2801qFiGgHS/loCEdAlZatgF5fMXV9lChoBkdATqUjZ+QU6GgHS/ZoCEdAlZccyJsO5XV9lChoBkdAcoUzFuNxVGgHTVkBaAhHQJWYH+YMOPN1fZQoaAZHQHH5C6UaAFxoB00mAWgIR0CVmC/RE4NrdX2UKGgGR0BvlsLF4s3AaAdNIQFoCEdAlZkhGYrrgXV9lChoBkdAbsntBv73wmgHTSgBaAhHQJWZfH/95yF1fZQoaAZHQHD6u1a4c3loB01FAWgIR0CVmYaTfR/mdX2UKGgGR0BxSSapgkTpaAdL9WgIR0CVmox2B8QadX2UKGgGR0Bs9f7zkIX1aAdNKgFoCEdAlZuOP7vXsnV9lChoBkdAcHn/+bVjJGgHTWIBaAhHQJWbjzjFQ2x1fZQoaAZHQG2yCOFQEZBoB01CAWgIR0CVnDqCHymRdX2UKGgGR0BukaXlbNbDaAdNPwFoCEdAlZzqP8yeqnV9lChoBkdAawtNZ/0/W2gHTRoBaAhHQJWdE1YQrc11fZQoaAZHQHGzBR64UexoB00OAWgIR0CVnrmozeoDdX2UKGgGR0Busu3F1jiGaAdNEwFoCEdAlZ7NKyv9tXV9lChoBkdAcCbdfsu3+mgHTScBaAhHQJWf7sNUfgd1fZQoaAZHQG18yZSeiBZoB00kAWgIR0CVoCfl6qsEdX2UKGgGR0BzOopx3mmtaAdL/GgIR0CVoEocaOxTdX2UKGgGR0BJVVCPZIxyaAdL5GgIR0CVoNY0EX+EdX2UKGgGR0BRdHRPXTVlaAdLzGgIR0CVoRtTDO1OdX2UKGgGR0BwdTuNPxhEaAdNQQFoCEdAlaFs1XNkfHV9lChoBkdAcKiPiDM/yGgHTSABaAhHQJWhaPwNLDh1fZQoaAZHQHHpdlAeJYVoB00pAWgIR0CVoni8WbgCdX2UKGgGR0BvzzaqS5iFaAdNHgFoCEdAlaR9Qj2SMnV9lChoBkdAcS/RJVbRnmgHTS0BaAhHQJWlA5vLowF1fZQoaAZHQG+qfDk2gnNoB00zAWgIR0CVpf6Mir1edX2UKGgGR0BxwoXpGFzuaAdNJgFoCEdAlaaUL6UJOXV9lChoBkdAbe3RDTjNp2gHTTABaAhHQJWmuoFV1fV1fZQoaAZHQHBkmxIJ7cBoB00lAWgIR0CVqJMTewcHdX2UKGgGR0BvPLL+xW1daAdNKAFoCEdAlajJ1zQu3HV9lChoBkdAbs1xhDw6Q2gHTRUBaAhHQJWpjvRZ2ZB1fZQoaAZHQG3JzAWSEDhoB00bAWgIR0CVqe9mHxjKdX2UKGgGR0BxddHJ9y93aAdNMgFoCEdAlapoYBNmDnV9lChoBkdAcS12criEQGgHTRQBaAhHQJWqpdVvMr51fZQoaAZHQHAt/9UCJXRoB00QAWgIR0CVqubbUPQOdX2UKGgGR0BtZuGGmDUWaAdNFgFoCEdAlasZMtbs4XV9lChoBkdAcDS90ihWYGgHTTkBaAhHQJWrk1UEPlN1fZQoaAZHQHBratPpIMBoB00OAWgIR0CVrAMFlkH2dX2UKGgGR0BICozN2TxHaAdL6mgIR0CVrMTR6WxAdX2UKGgGR0BpYfDP4VRDaAdNhgJoCEdAla76nzg/DHV9lChoBkdASlmhM8HObGgHTQABaAhHQJWvx05lvqF1fZQoaAZHQG+h41pCa7VoB004AWgIR0CVsA8EFGG3dX2UKGgGR0BvsbaVUuL8aAdNDAFoCEdAlbANeUpuuXV9lChoBkdAcXCwqy4WlGgHTSIBaAhHQJWwT1xsEaF1fZQoaAZHQHK6+S4e9zxoB00WAWgIR0CVskjcmBvrdX2UKGgGR0BvnOwJPZZkaAdNHAFoCEdAlbJR8lXzUnV9lChoBkdAcLgBMzuWr2gHTREBaAhHQJWy0gB91EF1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:aa67af624d62f3fc15c0f9f6c7e0e30cc285e47931ac3093c6c8c365df4b0ff2
3
- size 146635
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ac6a3af559e5493152d6e51d70895d9da1d56d416ba6c68bc30da19c9b340b31
3
+ size 146737
ppo-LunarLander-v2/data CHANGED
@@ -4,34 +4,34 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7fecfaf2e830>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fecfaf2e8c0>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fecfaf2e950>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fecfaf2e9e0>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7fecfaf2ea70>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7fecfaf2eb00>",
13
- "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fecfaf2eb90>",
14
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fecfaf2ec20>",
15
- "_predict": "<function ActorCriticPolicy._predict at 0x7fecfaf2ecb0>",
16
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fecfaf2ed40>",
17
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fecfaf2edd0>",
18
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fecfaf2ee60>",
19
  "__abstractmethods__": "frozenset()",
20
- "_abc_impl": "<_abc._abc_data object at 0x7fecfaf2a040>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
24
- "num_timesteps": 2031616,
25
- "_total_timesteps": 2000000,
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
- "start_time": 1689044279818201081,
30
  "learning_rate": 0.0003,
31
  "tensorboard_log": null,
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
- ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM2IA72/jFE+qHTqPf2Xlr6J8Fw5kZQUPQAAAAAAAAAAJgjdPXk/nD9qNw8/dRYSvxgtlz0bmm4+AAAAAAAAAADNMcA8w5EWur2fsD3Qst4xKUfnu25C/TMAAIA/AACAP80qg7xWZrY/M1DJvsyI7j0U8zc8+CaBPAAAAAAAAAAAmiYUvgNZ0z7c4JU+tqbDvvdX8bzfToo9AAAAAAAAAABmAt48FH6Gut63r7Wzut+w+2cNO9JV5zQAAIA/AACAP7Nbar20IIE+4pAnPtk4mb4mLYY81rwePQAAAAAAAAAAzZEkPUl8pD9K9VE+GZDmvk/Etj2RVaw9AAAAAAAAAABmeBs+N0elPoXJzb4Fjcm+YkdYvT4ICL4AAAAAAAAAAECFjL2cwmm824LlPe1L273awuk6wkm1OwAAgD8AAIA/LexiPgE6hz+YEoI+KhzhvuIJtj5ggLi8AAAAAAAAAABmzAW94UyMuuU/Zzr+IGs14/Rwug79g7kAAIA/AACAP5qdUT6+XtE+0FfuvYIMv7712Ak+5TxfvQAAAAAAAAAAZg3UvJRXlD2vvCI+oqynvhp5+Ty7HSe8AAAAAAAAAACajcW7Pa0Nu8f5Az1Sx/A7A9tIvCiV2zwAAIA/AACAPzOA2LxxQAU+YhALu//Jyb627Mu8d0zKvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
@@ -45,7 +45,7 @@
45
  "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
- ":serialized:": "gAWV6AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHJMR4IKMNuMAWyUS92MAXSUR0Cguhy/KyOadX2UKGgGR0BwNAZk078vaAdL4GgIR0CgujLncL0BdX2UKGgGR0BxGAN3GGVSaAdL7GgIR0CgujbRF7UodX2UKGgGR0BwTjHktEofaAdL4GgIR0CguoUjLSuydX2UKGgGR0Bx0ap97WupaAdL82gIR0Cgut9L6DXfdX2UKGgGR0BwolqmCROlaAdL1GgIR0CguzaP8yeqdX2UKGgGR0ByVukadc0MaAdL1mgIR0Cgu4pJwsGxdX2UKGgGR0BuXE7wKBuoaAdL5mgIR0Cgu7RNqQA/dX2UKGgGR0BwAJFz+3pfaAdL6WgIR0Cgu/eFlCkXdX2UKGgGR0BzTFEy+HrRaAdL/GgIR0CgvB26ClJpdX2UKGgGR0Byh2PXCj1xaAdL+2gIR0CgvCwqAjIJdX2UKGgGR0BxM9suWa+faAdL5WgIR0CgvEG7aqS6dX2UKGgGR0Bx8ow7DEWJaAdNtQFoCEdAoLyPReC04XV9lChoBkdAbqn71Iy0r2gHS85oCEdAoLy/Pomoi3V9lChoBkdAcl3FPznRs2gHS/hoCEdAoLzYX9BKMHV9lChoBkdAcXgotL+PzWgHS+VoCEdAoLzbdi2Dx3V9lChoBkdAcJwp2ll9SmgHS+BoCEdAoL0PU6PsA3V9lChoBkdAcmqUMG5c1WgHS+RoCEdAoL0x7Z39rHV9lChoBkdAc0bOAAhjfGgHS/toCEdAoL2BeRgZ0nV9lChoBkdAckWnxJ/XoWgHTQMBaAhHQKC98Ij4YaZ1fZQoaAZHQHN5FUdaMaVoB0vyaAhHQKC+E2AG0NV1fZQoaAZHQHDp1BD5TIhoB0vcaAhHQKC+G1c+qzZ1fZQoaAZHQHK+fI8yN4toB0vJaAhHQKC+Sx/ustF1fZQoaAZHQHDEbBGhEjRoB0vnaAhHQKC+gcQyylh1fZQoaAZHQHB3NoJzDGdoB0vqaAhHQKC/KxxDLKV1fZQoaAZHQHPhxPKuB+ZoB0vvaAhHQKC/Z0fYBeZ1fZQoaAZHQHHiWZAprk9oB00KAWgIR0Cgv3qWcBludX2UKGgGR0BwNGbUgB91aAdLzmgIR0Cgv356+nIidX2UKGgGR0BuRDNUwSJ1aAdLxmgIR0Cgv4HG8274dX2UKGgGR0BvjiDkELYxaAdLyWgIR0Cgv7jaGpMpdX2UKGgGR0BzGzVsk6cRaAdL/WgIR0Cgv+nCGetkdX2UKGgGR0Bw89EVnEl3aAdL7WgIR0Cgv/1c2R7rdX2UKGgGR0Bzgrn/1g6VaAdL6WgIR0CgwEZEUj9odX2UKGgGR0Bx7pP8AJb/aAdNPgFoCEdAoMBWpZOi4HV9lChoBkdAbxClTm4iHWgHS+doCEdAoMCJYzSCv3V9lChoBkdAbREafjCHh2gHS9toCEdAoMDLWTX8O3V9lChoBkdAcaecTrVvuWgHS9hoCEdAoMDrRnezlnV9lChoBkdAb6G/3WWhRWgHS+JoCEdAoME+ITGo73V9lChoBkdAcnxF1B+nZWgHS/VoCEdAoMFGCyyD7XV9lChoBkdAcKvdWyTpxGgHS91oCEdAoMFmFpPAPHV9lChoBkdAc0f7nPmgamgHS9NoCEdAoMIvoouwo3V9lChoBkdAcKlhPTG5tmgHS+loCEdAoMI1lI3BHnV9lChoBkdAcakRNATqS2gHS8xoCEdAoMJhO1v2oXV9lChoBkdAcVR/B3zMA2gHS+ZoCEdAoMJp/ViF03V9lChoBkdAcMRjRUm2LGgHS+JoCEdAoMJzPGACn3V9lChoBkdAcYJLXcxj8WgHS+1oCEdAoMKVIPK+z3V9lChoBkdAcaPBLf1pTWgHS9toCEdAoMLEQumJnHV9lChoBkdAbhlx+8XenGgHS+ZoCEdAoML8NlRP43V9lChoBkdAb1iy5Zr57GgHS91oCEdAoMMwfMfRu3V9lChoBkdAcpgSzPa+OGgHS9doCEdAoMMuw9q1xHV9lChoBkdAcSokwevIO2gHS+RoCEdAoMONjy4FzXV9lChoBkdAb3DZntfG/GgHS9poCEdAoMO3Y+Sr53V9lChoBkdAcW5TH80k4WgHS8doCEdAoMPz2OAAhnV9lChoBkdAc2QMRHww02gHTQABaAhHQKDEVWJ79ht1fZQoaAZHQHK6dcjZ+QVoB0vxaAhHQKDEdIHTqjd1fZQoaAZHQHP+9+CsfaJoB0v9aAhHQKDEyyCWeH11fZQoaAZHQHCZns5XEIhoB0veaAhHQKDFNkPMB6t1fZQoaAZHQHAHKGHpKSRoB0vSaAhHQKDFNfb9If91fZQoaAZHQHEjgsoUi6hoB0vaaAhHQKDFaDFId2h1fZQoaAZHQHEl4jB2wFFoB0vpaAhHQKDFaBuGbkR1fZQoaAZHQHLruxnnMdNoB0vfaAhHQKDFcpDu0C11fZQoaAZHQHAyUL6UJOZoB0vIaAhHQKDFgyRjjJd1fZQoaAZHQHHa76Hj6vdoB0vtaAhHQKDFzbr1M/R1fZQoaAZHQHJK14keIVNoB0vbaAhHQKDF90J4SpR1fZQoaAZHQHEBdX5nDixoB0vaaAhHQKDGH6eGwid1fZQoaAZHQHNnSx7iQ1doB0vZaAhHQKDGGpqASWZ1fZQoaAZHQHKJ/a11GLFoB0vOaAhHQKDGUajN6gN1fZQoaAZHQHOJJjH4oJBoB0v+aAhHQKDHChGpdbB1fZQoaAZHQHMP7xAjY7JoB0vyaAhHQKDHHoA4n4R1fZQoaAZHQG52Wrn1WbRoB0vXaAhHQKDHaRFqi491fZQoaAZHQHJUQ/cFhXtoB0vraAhHQKDHnFDv3Jx1fZQoaAZHQHFi083dbgVoB0vYaAhHQKDH8mLtNSJ1fZQoaAZHQG6NWFN+LFZoB0vWaAhHQKDIbR51Ng11fZQoaAZHQHCZ9dZ7ojhoB0vQaAhHQKDIkLYPGyZ1fZQoaAZHQG/jH3Dej21oB0vQaAhHQKDIkOf/WDp1fZQoaAZHQHAiR8IAwPBoB0vsaAhHQKDI3okAxSJ1fZQoaAZHQHHLLy+YdABoB0voaAhHQKDJLCdBjWl1fZQoaAZHQHDe4G6f8MxoB0vOaAhHQKDJZueBg/l1fZQoaAZHQHEGFO0svqVoB0v8aAhHQKDJh65XlsB1fZQoaAZHQHDvY2GZeAxoB0vTaAhHQKDJwgJ1JUZ1fZQoaAZHQG+H3iaRZEFoB0v1aAhHQKDJ8JMQEp11fZQoaAZHQHJrsbBGhEloB00BAWgIR0CgywW0zCUHdX2UKGgGR0Bx5jUlRgqmaAdNEwFoCEdAoMsMwrUb1nV9lChoBkdAcSmZi/fwZ2gHS85oCEdAoMtjs2NvO3V9lChoBkdAcasM7EHdGmgHS+RoCEdAoMuzklu3t3V9lChoBkdAb0zH/cWTHWgHS9loCEdAoMwQqRU3oHV9lChoBkdAcZgy7f51vGgHS+loCEdAoMwxGnXNDHV9lChoBkdAcuQTXJ5miGgHS9xoCEdAoMx4ZZSvT3V9lChoBkdAb/Ht6X0GvGgHS8hoCEdAoMyQYaYNRXV9lChoBkdAcs7DbrTpgWgHS9xoCEdAoM0jZzxPPHV9lChoBkdAbsjgk1Mue2gHS9ZoCEdAoM1ffKp1inV9lChoBkdAb7tRCx/us2gHS+5oCEdAoM2Qqur6tXV9lChoBkdAcP4uuzQeFWgHS8toCEdAoM2rDye7MHV9lChoBkdAciF8mKIi1WgHS9loCEdAoM3AJRfnfXV9lChoBkdAcChntfG+9WgHS81oCEdAoM3VHFxXGXV9lChoBkdAcU9M1TBInWgHS9poCEdAoM5COR1YAHV9lChoBkdAcrYGKyfL92gHTQUBaAhHQKDPXPfKp1l1fZQoaAZHQHMoRhUipvRoB0vaaAhHQKDP+kN4JNV1fZQoaAZHQHHkC4SYgJVoB0vtaAhHQKDQD41P3zt1fZQoaAZHQHM5KO5rgwZoB0v5aAhHQKDQXKQJXyR1ZS4="
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
@@ -77,9 +77,9 @@
77
  "_np_random": null
78
  },
79
  "n_envs": 16,
80
- "n_steps": 2048,
81
  "gamma": 0.999,
82
- "gae_lambda": 0.95,
83
  "ent_coef": 0.01,
84
  "vf_coef": 0.5,
85
  "max_grad_norm": 0.5,
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7970aee8de10>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7970aee8dea0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7970aee8df30>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7970aee8dfc0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7970aee8e050>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7970aee8e0e0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7970aee8e170>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7970aee8e200>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7970aee8e290>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7970aee8e320>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7970aee8e3b0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7970aee8e440>",
19
  "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7970aee86580>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
+ "start_time": 1690159022592695750,
30
  "learning_rate": 0.0003,
31
  "tensorboard_log": null,
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEB9iL3o+iw/BNy0vb8Zrr7frAC9Ekg/PQAAAAAAAAAA5Ym2vnYKOT+uslo+4r1xvhjjcL5gl1k+AAAAAAAAAABmTvY7axbdPWs1cLzXa46+LhNGvf7ZXD0AAAAAAAAAAMAPHD5uo/W8EqkFPqLlBLqLc5Y8nnLMvQAAgD8AAIA/Zuatu8+AGby5B4K7HE62PPGtgT1F15W9AACAPwAAgD+z0AM9xcL9PO+jl7wU0wq+JdTIvGv6HbwAAAAAAAAAAFqhgL31pRQ/64S1vb18V74FM4i95BcBvgAAAAAAAAAAUJJVvg/fST8p7cG9D1qtvoqxGL7D8Sw+AAAAAAAAAAAzA1m8FAirulv/3bowcJI8s/H0Oy0lfr0AAIA/AACAP830/TyphR89rkoXPVylOr5jt8Q8rlkjPQAAAAAAAAAAQKWOPQRJpT93hJk+FCeAvpTBmj1bchw+AAAAAAAAAAAzg7s8xGazP0M1oT77Jw6+g8G9uYiuRD0AAAAAAAAAAM3EhrvFEDw/CN5DPU9whb4QuK88vVCuvAAAAAAAAAAAAGzUO6XMvj+GB8w8TQ7IvZSKQr0irEC8AAAAAAAAAABmBAC9j0h4PfTHsz18TRG+2O0qvc9BtDwAAAAAAAAAABqsh72PLnu6sP45O1XyaDnID645gkfbuQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
 
45
  "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVNgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG5ke5Fw1iyMAWyUTT0BjAF0lEdAlWLh3eN1hnV9lChoBkdAckF9JjDsMWgHTSUBaAhHQJVkJeiSJTF1fZQoaAZHQHHVlafSQYFoB00iAWgIR0CVZEXzUZvUdX2UKGgGR0BtlDB2wFC+aAdNJQFoCEdAlWWFVPva13V9lChoBkdAb1UKCQLeAWgHTQ8BaAhHQJVmoe2d/ax1fZQoaAZHQHA4Ovt+kQBoB00VAWgIR0CVZ1UKArhBdX2UKGgGR0ByAmrxRVIaaAdL/GgIR0CVZ/rI5o4/dX2UKGgGR0BvuYvi97F9aAdNKAFoCEdAlWgtIGyHEnV9lChoBkdAbl0M85jpcGgHTUMBaAhHQJVoLMB6rvN1fZQoaAZHQHEyGyxA0KtoB01PAWgIR0CVaGO32EkCdX2UKGgGR0BuZXAIppevaAdNDwFoCEdAlWi6y8jAz3V9lChoBkdAUh02LpA2RGgHS8BoCEdAlWjgeNkvsnV9lChoBkdAbu3G4qgAZWgHTTcBaAhHQJVrMxREWqN1fZQoaAZHQG4Z/nW8RL9oB00PAWgIR0CVa+hEBsAOdX2UKGgGR0Bxv59+gDigaAdNKwFoCEdAlWwdC7btZ3V9lChoBkdAcQXKBd2Pk2gHTUUBaAhHQJVsSIvalDZ1fZQoaAZHQG3ctSZSeiBoB00FAWgIR0CVbOT37DVIdX2UKGgGR0BEK8Kw6hg3aAdL9GgIR0CVban9vS+hdX2UKGgGR0BtmCnUDuBuaAdNIQFoCEdAlW3z/+85CHV9lChoBkdAcpCfozN2T2gHTQ8BaAhHQJVvnEaVD8d1fZQoaAZHQHBdTDO1OTJoB00eAWgIR0CVcNK5TZQIdX2UKGgGR0BtTfxnWattaAdNKwFoCEdAlXH05EMLGHV9lChoBkdAcnMpSrHU+mgHTScBaAhHQJVyAWFev6l1fZQoaAZHQHFHupXIU8FoB00VAWgIR0CVcgENOM2ndX2UKGgGR0Bvh8GX5WRzaAdNHQFoCEdAlXJujynUD3V9lChoBkdAb+UTV2A5JmgHTUoBaAhHQJVzHeMyaeB1fZQoaAZHQExn9H+ZPVNoB0vaaAhHQJVzjn0TURZ1fZQoaAZHQHJQt+PRzBBoB0v8aAhHQJVzuO801qF1fZQoaAZHQHKAjqnm7rdoB013AWgIR0CVdKnQ6ZH/dX2UKGgGR0BxzH1kDp1SaAdNHAFoCEdAlXZ3gUDdQHV9lChoBkdAcYXL7Gecx2gHTTsBaAhHQJV2dDeCTU11fZQoaAZHQHJttwBHTZxoB01BAWgIR0CVdxAeaKDTdX2UKGgGR0BvoMVN5+pgaAdNLwFoCEdAlXfwggX/HnV9lChoBkdAbSpAjY7JXGgHTSwBaAhHQJV4GarmyPd1fZQoaAZHQHEpFPva11JoB00cAWgIR0CVeSOM2m52dX2UKGgGR0Bw4jaAWi1zaAdNGwFoCEdAlXpFEuxrz3V9lChoBkdAcqmExIre7GgHTQcBaAhHQJV7JGtp22Z1fZQoaAZHQHBlBmseXAxoB00VAWgIR0CVeyzIFNcodX2UKGgGR0Bwpl6JIlMRaAdNMAFoCEdAlXwdk8Rtg3V9lChoBkdAcQcews5GSmgHTQ4BaAhHQJV8JWJaaCt1fZQoaAZHQHC11ZcLSeBoB00EAWgIR0CVfHVC5VfedX2UKGgGR0BuFl29tdiVaAdNDwFoCEdAlXyfdIoVmHV9lChoBkdAcatoNd7fHmgHTVQBaAhHQJV9K1w5vLp1fZQoaAZHQF8QLCvX9R9oB03oA2gIR0CVfUdy1eBydX2UKGgGR0Bw7qavzOHGaAdNBQFoCEdAlX1olUp/gHV9lChoBkdAcaJ0se4kNWgHTQYBaAhHQJWSANG3F1l1fZQoaAZHQFEehFmWdEtoB0vcaAhHQJWSDVe8f3h1fZQoaAZHQG89NMPBi1BoB00fAWgIR0CVkr7ngYP5dX2UKGgGR0Byc9Dst03gaAdNDQFoCEdAlZK6Dwpe/3V9lChoBkdAcsMfkWAPNGgHTRoBaAhHQJWT9g/keZJ1fZQoaAZHQHDfpVwPy09oB0v/aAhHQJWV9k8Rtgt1fZQoaAZHQHDgGys0YTFoB006AWgIR0CVlhFHrhR7dX2UKGgGR0BsrLy4FzMiaAdNCwFoCEdAlZZlwYLsr3V9lChoBkdAct2801qFiGgHS/loCEdAlZatgF5fMXV9lChoBkdATqUjZ+QU6GgHS/ZoCEdAlZccyJsO5XV9lChoBkdAcoUzFuNxVGgHTVkBaAhHQJWYH+YMOPN1fZQoaAZHQHH5C6UaAFxoB00mAWgIR0CVmC/RE4NrdX2UKGgGR0BvlsLF4s3AaAdNIQFoCEdAlZkhGYrrgXV9lChoBkdAbsntBv73wmgHTSgBaAhHQJWZfH/95yF1fZQoaAZHQHD6u1a4c3loB01FAWgIR0CVmYaTfR/mdX2UKGgGR0BxSSapgkTpaAdL9WgIR0CVmox2B8QadX2UKGgGR0Bs9f7zkIX1aAdNKgFoCEdAlZuOP7vXsnV9lChoBkdAcHn/+bVjJGgHTWIBaAhHQJWbjzjFQ2x1fZQoaAZHQG2yCOFQEZBoB01CAWgIR0CVnDqCHymRdX2UKGgGR0BukaXlbNbDaAdNPwFoCEdAlZzqP8yeqnV9lChoBkdAawtNZ/0/W2gHTRoBaAhHQJWdE1YQrc11fZQoaAZHQHGzBR64UexoB00OAWgIR0CVnrmozeoDdX2UKGgGR0Busu3F1jiGaAdNEwFoCEdAlZ7NKyv9tXV9lChoBkdAcCbdfsu3+mgHTScBaAhHQJWf7sNUfgd1fZQoaAZHQG18yZSeiBZoB00kAWgIR0CVoCfl6qsEdX2UKGgGR0BzOopx3mmtaAdL/GgIR0CVoEocaOxTdX2UKGgGR0BJVVCPZIxyaAdL5GgIR0CVoNY0EX+EdX2UKGgGR0BRdHRPXTVlaAdLzGgIR0CVoRtTDO1OdX2UKGgGR0BwdTuNPxhEaAdNQQFoCEdAlaFs1XNkfHV9lChoBkdAcKiPiDM/yGgHTSABaAhHQJWhaPwNLDh1fZQoaAZHQHHpdlAeJYVoB00pAWgIR0CVoni8WbgCdX2UKGgGR0BvzzaqS5iFaAdNHgFoCEdAlaR9Qj2SMnV9lChoBkdAcS/RJVbRnmgHTS0BaAhHQJWlA5vLowF1fZQoaAZHQG+qfDk2gnNoB00zAWgIR0CVpf6Mir1edX2UKGgGR0BxwoXpGFzuaAdNJgFoCEdAlaaUL6UJOXV9lChoBkdAbe3RDTjNp2gHTTABaAhHQJWmuoFV1fV1fZQoaAZHQHBkmxIJ7cBoB00lAWgIR0CVqJMTewcHdX2UKGgGR0BvPLL+xW1daAdNKAFoCEdAlajJ1zQu3HV9lChoBkdAbs1xhDw6Q2gHTRUBaAhHQJWpjvRZ2ZB1fZQoaAZHQG3JzAWSEDhoB00bAWgIR0CVqe9mHxjKdX2UKGgGR0BxddHJ9y93aAdNMgFoCEdAlapoYBNmDnV9lChoBkdAcS12criEQGgHTRQBaAhHQJWqpdVvMr51fZQoaAZHQHAt/9UCJXRoB00QAWgIR0CVqubbUPQOdX2UKGgGR0BtZuGGmDUWaAdNFgFoCEdAlasZMtbs4XV9lChoBkdAcDS90ihWYGgHTTkBaAhHQJWrk1UEPlN1fZQoaAZHQHBratPpIMBoB00OAWgIR0CVrAMFlkH2dX2UKGgGR0BICozN2TxHaAdL6mgIR0CVrMTR6WxAdX2UKGgGR0BpYfDP4VRDaAdNhgJoCEdAla76nzg/DHV9lChoBkdASlmhM8HObGgHTQABaAhHQJWvx05lvqF1fZQoaAZHQG+h41pCa7VoB004AWgIR0CVsA8EFGG3dX2UKGgGR0BvsbaVUuL8aAdNDAFoCEdAlbANeUpuuXV9lChoBkdAcXCwqy4WlGgHTSIBaAhHQJWwT1xsEaF1fZQoaAZHQHK6+S4e9zxoB00WAWgIR0CVskjcmBvrdX2UKGgGR0BvnOwJPZZkaAdNHAFoCEdAlbJR8lXzUnV9lChoBkdAcLgBMzuWr2gHTREBaAhHQJWy0gB91EF1ZS4="
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
 
77
  "_np_random": null
78
  },
79
  "n_envs": 16,
80
+ "n_steps": 1024,
81
  "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
  "ent_coef": 0.01,
84
  "vf_coef": 0.5,
85
  "max_grad_norm": 0.5,
ppo-LunarLander-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:e50cb09d4679a8d2f3d569d37dbb273c71e30b184e98160051a8e8ce74a0ab1a
3
  size 87929
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e89c02895c61c11453ad76af6de8f38c701f904f674092668d8e6ecd292ada71
3
  size 87929
ppo-LunarLander-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:1cc1d7d4b35b56e9008694a61c202eb3110114669a35a514177d0ff9dcde715e
3
  size 43329
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5834d818016ebc7ac51491d2c2dbb3447b52d65c914159e4174dc0b746404cc9
3
  size 43329
ppo-LunarLander-v2/system_info.txt CHANGED
@@ -1,5 +1,5 @@
1
- - OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
2
- - Python: 3.10.12
3
  - Stable-Baselines3: 2.0.0a5
4
  - PyTorch: 2.0.1+cu118
5
  - GPU Enabled: True
 
1
+ - OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
2
+ - Python: 3.10.6
3
  - Stable-Baselines3: 2.0.0a5
4
  - PyTorch: 2.0.1+cu118
5
  - GPU Enabled: True
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 275.9120913139089, "std_reward": 20.236311455080898, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-11T03:32:01.046543"}
 
1
+ {"mean_reward": 254.70571549999994, "std_reward": 17.312870470735767, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-24T01:00:17.220107"}