update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: openai/whisper-tiny
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- PolyAI/minds14
|
8 |
+
metrics:
|
9 |
+
- wer
|
10 |
+
model-index:
|
11 |
+
- name: whisper-tiny-en-US
|
12 |
+
results:
|
13 |
+
- task:
|
14 |
+
name: Automatic Speech Recognition
|
15 |
+
type: automatic-speech-recognition
|
16 |
+
dataset:
|
17 |
+
name: PolyAI/minds14
|
18 |
+
type: PolyAI/minds14
|
19 |
+
config: en-US
|
20 |
+
split: train[450:]
|
21 |
+
args: en-US
|
22 |
+
metrics:
|
23 |
+
- name: Wer
|
24 |
+
type: wer
|
25 |
+
value: 0.3435655253837072
|
26 |
+
---
|
27 |
+
|
28 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
29 |
+
should probably proofread and complete it, then remove this comment. -->
|
30 |
+
|
31 |
+
# whisper-tiny-en-US
|
32 |
+
|
33 |
+
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the PolyAI/minds14 dataset.
|
34 |
+
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 0.6286
|
36 |
+
- Wer Ortho: 0.3430
|
37 |
+
- Wer: 0.3436
|
38 |
+
|
39 |
+
## Model description
|
40 |
+
|
41 |
+
More information needed
|
42 |
+
|
43 |
+
## Intended uses & limitations
|
44 |
+
|
45 |
+
More information needed
|
46 |
+
|
47 |
+
## Training and evaluation data
|
48 |
+
|
49 |
+
More information needed
|
50 |
+
|
51 |
+
## Training procedure
|
52 |
+
|
53 |
+
### Training hyperparameters
|
54 |
+
|
55 |
+
The following hyperparameters were used during training:
|
56 |
+
- learning_rate: 5e-05
|
57 |
+
- train_batch_size: 8
|
58 |
+
- eval_batch_size: 8
|
59 |
+
- seed: 42
|
60 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
61 |
+
- lr_scheduler_type: constant_with_warmup
|
62 |
+
- lr_scheduler_warmup_steps: 10
|
63 |
+
- training_steps: 225
|
64 |
+
|
65 |
+
### Training results
|
66 |
+
|
67 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer |
|
68 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|
|
69 |
+
| 3.2798 | 0.25 | 14 | 0.9783 | 0.7218 | 0.6889 |
|
70 |
+
| 0.6283 | 0.5 | 28 | 0.5667 | 0.4479 | 0.4427 |
|
71 |
+
| 0.5574 | 0.75 | 42 | 0.5307 | 0.4812 | 0.4858 |
|
72 |
+
| 0.501 | 1.0 | 56 | 0.5130 | 0.3800 | 0.3813 |
|
73 |
+
| 0.2296 | 1.25 | 70 | 0.5057 | 0.3479 | 0.3436 |
|
74 |
+
| 0.2296 | 1.5 | 84 | 0.5515 | 0.3572 | 0.3512 |
|
75 |
+
| 0.2207 | 1.75 | 98 | 0.5356 | 0.3578 | 0.3530 |
|
76 |
+
| 0.1928 | 2.0 | 112 | 0.5288 | 0.3226 | 0.3200 |
|
77 |
+
| 0.0795 | 2.25 | 126 | 0.5532 | 0.3257 | 0.3259 |
|
78 |
+
| 0.0651 | 2.5 | 140 | 0.5833 | 0.3504 | 0.3512 |
|
79 |
+
| 0.0719 | 2.75 | 154 | 0.5931 | 0.3467 | 0.3501 |
|
80 |
+
| 0.0722 | 3.0 | 168 | 0.5994 | 0.3498 | 0.3477 |
|
81 |
+
| 0.0231 | 3.25 | 182 | 0.6030 | 0.3270 | 0.3264 |
|
82 |
+
| 0.0433 | 3.5 | 196 | 0.6059 | 0.3214 | 0.3200 |
|
83 |
+
| 0.0663 | 3.75 | 210 | 0.6262 | 0.3646 | 0.3648 |
|
84 |
+
| 0.0396 | 4.0 | 224 | 0.6286 | 0.3430 | 0.3436 |
|
85 |
+
|
86 |
+
|
87 |
+
### Framework versions
|
88 |
+
|
89 |
+
- Transformers 4.31.0
|
90 |
+
- Pytorch 2.0.1+cu118
|
91 |
+
- Datasets 2.14.3
|
92 |
+
- Tokenizers 0.13.3
|