tanmoyio commited on
Commit
1b1129b
1 Parent(s): c12a9fc

xlsr-bengali

Browse files
README.md ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: Bengali
3
+ datasets:
4
+ - OpenSLR
5
+ metrics:
6
+ - wer
7
+ tags:
8
+ - audio
9
+ - automatic-speech-recognition
10
+ - speech
11
+ - xlsr-fine-tuning-week
12
+ license: Attribution-ShareAlike 4.0 International
13
+ model-index:
14
+ - name: XLSR Wav2Vec2 Bengali by Tanmoy Sarkar
15
+ results:
16
+ - task:
17
+ name: Speech Recognition
18
+ type: automatic-speech-recognition
19
+ dataset:
20
+ name: OpenSLR
21
+ type: OpenSLR
22
+ args: or
23
+ metrics:
24
+ - name: Test WER
25
+ type: wer
26
+ value: 88.58
27
+ ---
28
+ # Wav2Vec2-Large-XLSR-Bengali
29
+ Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) Bengali using the [Bengali ASR training data set containing ~196K utterances](https://www.openslr.org/53/).
30
+ When using this model, make sure that your speech input is sampled at 16kHz.
31
+ ## Usage
32
+ Dataset must be downloaded from [this website](https://www.openslr.org/53/) and preprocessed accordingly. For example 1250 test samples has been chosen.
33
+ ```python
34
+ import pandas as pd
35
+ test_dataset = pd.read_csv('utt_spk_text.tsv', sep='\t', header=None)[60000:61250]
36
+ test_dataset.columns = ["audio_path", "__", "label"]
37
+ test_dataset = test_data.drop("__", axis=1)
38
+ def add_file_path(text):
39
+ path = "data/" + text[:2] + "/" + text + '.flac'
40
+ return path
41
+ test_dataset['audio_path'] = test_dataset['audio_path'].map(lambda x: add_file_path(x))
42
+ ```
43
+ The model can be used directly (without a language model) as follows:
44
+ ```python
45
+ import torch
46
+ import torchaudio
47
+ from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
48
+ processor = Wav2Vec2Processor.from_pretrained("tanmoyio/wav2vec2-large-xlsr-bengali")
49
+ model = Wav2Vec2ForCTC.from_pretrained("tanmoyio/wav2vec2-large-xlsr-bengali")
50
+ resampler = torchaudio.transforms.Resample(48_000, 16_000)
51
+ # Preprocessing the datasets.
52
+ # We need to read the aduio files as arrays
53
+ def speech_file_to_array_fn(batch):
54
+ speech_array, sampling_rate = torchaudio.load(batch["audio_path"])
55
+ batch["speech"] = resampler(speech_array).squeeze().numpy()
56
+ return batch
57
+ test_dataset = test_dataset.map(speech_file_to_array_fn)
58
+ inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
59
+ with torch.no_grad():
60
+ logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
61
+ predicted_ids = torch.argmax(logits, dim=-1)
62
+ print("Prediction:", processor.batch_decode(predicted_ids))
63
+ print("Reference:", test_dataset["label"][:2])
64
+ ```
65
+ ## Evaluation
66
+ The model can be evaluated as follows on the Bengali test data of OpenSLR.
67
+ ```python
68
+ import torch
69
+ import torchaudio
70
+ from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
71
+ import re
72
+ wer = load_metric("wer")
73
+ processor = Wav2Vec2Processor.from_pretrained("tanmoyio/wav2vec2-large-xlsr-bengali")
74
+ model = Wav2Vec2ForCTC.from_pretrained("tanmoyio/wav2vec2-large-xlsr-bengali")
75
+ model.to("cuda")
76
+ resampler = torchaudio.transforms.Resample(48_000, 16_000)
77
+ # Preprocessing the datasets.
78
+ # We need to read the aduio files as arrays
79
+ def speech_file_to_array_fn(batch):
80
+ batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["label"]).lower()
81
+ speech_array, sampling_rate = torchaudio.load(batch["path"])
82
+ batch["speech"] = resampler(speech_array).squeeze().numpy()
83
+ return batch
84
+ test_dataset = test_dataset.map(speech_file_to_array_fn)
85
+ # Preprocessing the datasets.
86
+ # We need to read the aduio files as arrays
87
+ def evaluate(batch):
88
+ inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
89
+ with torch.no_grad():
90
+ logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
91
+ pred_ids = torch.argmax(logits, dim=-1)
92
+ batch["pred_strings"] = processor.batch_decode(pred_ids)
93
+ return batch
94
+ result = test_dataset.map(evaluate, batched=True, batch_size=8)
95
+ print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
96
+ ```
97
+ **Test Result**: 88.58 %
98
+ ## Training
99
+ The script used for training can be found [Bengali ASR Fine Tuning Wav2Vec2](https://colab.research.google.com/drive/1Bkc5C_cJV9BeS0FD0MuHyayl8hqcbdRZ?usp=sharing)
config.json ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "facebook/wav2vec2-large-xlsr-53",
3
+ "activation_dropout": 0.0,
4
+ "apply_spec_augment": true,
5
+ "architectures": [
6
+ "Wav2Vec2ForCTC"
7
+ ],
8
+ "attention_dropout": 0.1,
9
+ "bos_token_id": 1,
10
+ "conv_bias": true,
11
+ "conv_dim": [
12
+ 512,
13
+ 512,
14
+ 512,
15
+ 512,
16
+ 512,
17
+ 512,
18
+ 512
19
+ ],
20
+ "conv_kernel": [
21
+ 10,
22
+ 3,
23
+ 3,
24
+ 3,
25
+ 3,
26
+ 2,
27
+ 2
28
+ ],
29
+ "conv_stride": [
30
+ 5,
31
+ 2,
32
+ 2,
33
+ 2,
34
+ 2,
35
+ 2,
36
+ 2
37
+ ],
38
+ "ctc_loss_reduction": "mean",
39
+ "ctc_zero_infinity": true,
40
+ "do_stable_layer_norm": true,
41
+ "eos_token_id": 2,
42
+ "feat_extract_activation": "gelu",
43
+ "feat_extract_dropout": 0.0,
44
+ "feat_extract_norm": "layer",
45
+ "feat_proj_dropout": 0.0,
46
+ "final_dropout": 0.0,
47
+ "gradient_checkpointing": true,
48
+ "hidden_act": "gelu",
49
+ "hidden_dropout": 0.1,
50
+ "hidden_size": 1024,
51
+ "initializer_range": 0.02,
52
+ "intermediate_size": 4096,
53
+ "layer_norm_eps": 1e-05,
54
+ "layerdrop": 0.1,
55
+ "mask_channel_length": 10,
56
+ "mask_channel_min_space": 1,
57
+ "mask_channel_other": 0.0,
58
+ "mask_channel_prob": 0.0,
59
+ "mask_channel_selection": "static",
60
+ "mask_feature_length": 10,
61
+ "mask_feature_prob": 0.0,
62
+ "mask_time_length": 10,
63
+ "mask_time_min_space": 1,
64
+ "mask_time_other": 0.0,
65
+ "mask_time_prob": 0.05,
66
+ "mask_time_selection": "static",
67
+ "model_type": "wav2vec2",
68
+ "num_attention_heads": 16,
69
+ "num_conv_pos_embedding_groups": 16,
70
+ "num_conv_pos_embeddings": 128,
71
+ "num_feat_extract_layers": 7,
72
+ "num_hidden_layers": 24,
73
+ "pad_token_id": 118,
74
+ "transformers_version": "4.5.0.dev0",
75
+ "vocab_size": 119
76
+ }
preprocessor_config.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_normalize": true,
3
+ "feature_size": 1,
4
+ "padding_side": "right",
5
+ "padding_value": 0.0,
6
+ "return_attention_mask": true,
7
+ "sampling_rate": 16000
8
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:788e64f971b140bbc265df0486041a0607fe55baf5a22c15b31140b5e5cc1813
3
+ size 1262421719
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"bos_token": "<s>", "eos_token": "</s>", "unk_token": "[UNK]", "pad_token": "[PAD]"}
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"unk_token": "[UNK]", "bos_token": "<s>", "eos_token": "</s>", "pad_token": "[PAD]", "do_lower_case": false, "word_delimiter_token": "|"}
vocab.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"র": 0, "0": 1, "t": 2, "০": 3, "‌": 4, "ন": 5, "প": 6, "৬": 7, "ঃ": 8, "\t": 9, "ড": 10, "হ": 11, "ব": 12, "8": 13, "১": 14, "1": 15, "৮": 16, "স": 17, "ো": 18, "ঙ": 19, "৭": 20, "o": 21, "ূ": 22, "ৈ": 23, "‍": 24, "d": 25, "ফ": 26, "য়": 27, "c": 28, "ঊ": 29, "৪": 30, "b": 31, "জ": 32, "p": 33, "9": 34, "3": 35, "ড়": 36, "2": 37, "w": 39, "ল": 40, "ু": 41, "ঝ": 42, "\"": 43, "ই": 44, "ঘ": 45, "n": 46, "ক": 47, "ট": 48, "r": 49, "ণ": 50, "ছ": 51, "থ": 52, "ভ": 53, "শ": 54, ":": 55, "দ": 56, "6": 57, "a": 58, "ম": 59, "-": 60, "এ": 61, "!": 62, "ত": 63, "খ": 64, "চ": 65, ",": 66, ".": 67, "২": 68, "l": 69, "আ": 70, "গ": 71, "্": 72, "4": 73, "ঞ": 74, "৩": 75, "7": 76, "য": 77, "s": 78, "/": 79, "”": 80, "়": 81, "ও": 82, "e": 83, "ৌ": 84, "ঈ": 85, "'": 86, "ে": 87, "া": 88, "ঢ": 89, "\n": 90, "ঐ": 91, "ঔ": 92, "‘": 93, "উ": 94, "’": 95, "ধ": 96, "g": 97, "ঠ": 98, "ং": 99, "।": 100, "u": 101, "5": 102, "ৎ": 103, "v": 104, "ঋ": 105, "ী": 106, "৯": 107, "ঁ": 108, "অ": 109, "f": 110, "ষ": 111, "“": 112, "৫": 113, "ৃ": 114, "?": 115, "ি": 116, "|": 38, "[UNK]": 117, "[PAD]": 118}