Talha Javed Mukhtar commited on
Commit
a32fc23
1 Parent(s): 36beb2f

First push

Browse files
AVAXUSDT_x22.xlsx_binary_classification_model.h5 ADDED
Binary file (77.6 kB). View file
 
README.md ADDED
@@ -0,0 +1 @@
 
 
1
+ Simple NN that takes in 27 parameters related to a cryptocurrency and classifies the datapoint as 0 OR 1.
model.py ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import tensorflow as tf
2
+
3
+ class CryptoBinaryClassifier(tf.keras.Model):
4
+ def __init__(self, *args, **kwargs):
5
+ super(CryptoBinaryClassifier, self).__init__()
6
+ # Define your model architecture here
7
+ self.model = tf.keras.Sequential([
8
+ tf.keras.layers.Input(shape=(27,)),
9
+ tf.keras.layers.Dense(64, activation='relu'),
10
+ tf.keras.layers.Dense(32, activation='relu'),
11
+ tf.keras.layers.Dense(1, activation='sigmoid')
12
+ ])
13
+
14
+ def call(self, inputs, training=False):
15
+ return self.model(inputs)
16
+
17
+ def __init__(self, *args, **kwargs):
18
+ super(CryptoBinaryClassifier, self).__init__()
19
+ # Load your pre-trained weights
20
+ self.load_weights('AVAXUSDT_x22.xlsx_binary_classification_model.h5')
21
+
22
+ def predict(self, input_data):
23
+ # Preprocess input_data if necessary
24
+ return self(input_data)