tae98 commited on
Commit
1beac6d
·
1 Parent(s): 43ac321

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +93 -0
README.md ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: openai/whisper-base.en
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - marsyas/gtzan
8
+ metrics:
9
+ - accuracy
10
+ model-index:
11
+ - name: whisper-base.en-finetuned-gtzan
12
+ results:
13
+ - task:
14
+ name: Audio Classification
15
+ type: audio-classification
16
+ dataset:
17
+ name: GTZAN
18
+ type: marsyas/gtzan
19
+ config: default
20
+ split: train
21
+ args: default
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.88
26
+ ---
27
+
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # whisper-base.en-finetuned-gtzan
32
+
33
+ This model is a fine-tuned version of [openai/whisper-base.en](https://huggingface.co/openai/whisper-base.en) on the GTZAN dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 0.6266
36
+ - Accuracy: 0.88
37
+
38
+ ## Model description
39
+
40
+ More information needed
41
+
42
+ ## Intended uses & limitations
43
+
44
+ More information needed
45
+
46
+ ## Training and evaluation data
47
+
48
+ More information needed
49
+
50
+ ## Training procedure
51
+
52
+ ### Training hyperparameters
53
+
54
+ The following hyperparameters were used during training:
55
+ - learning_rate: 5e-05
56
+ - train_batch_size: 12
57
+ - eval_batch_size: 12
58
+ - seed: 42
59
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
60
+ - lr_scheduler_type: linear
61
+ - lr_scheduler_warmup_ratio: 0.1
62
+ - num_epochs: 18
63
+
64
+ ### Training results
65
+
66
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
67
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
68
+ | 1.7396 | 1.0 | 75 | 1.6061 | 0.56 |
69
+ | 0.8839 | 2.0 | 150 | 0.8286 | 0.77 |
70
+ | 0.7631 | 3.0 | 225 | 0.6353 | 0.81 |
71
+ | 0.4049 | 4.0 | 300 | 0.5840 | 0.82 |
72
+ | 0.3031 | 5.0 | 375 | 0.4069 | 0.88 |
73
+ | 0.3031 | 6.0 | 450 | 0.7152 | 0.81 |
74
+ | 0.2879 | 7.0 | 525 | 0.7061 | 0.85 |
75
+ | 0.0301 | 8.0 | 600 | 0.5691 | 0.89 |
76
+ | 0.0311 | 9.0 | 675 | 0.6153 | 0.88 |
77
+ | 0.0025 | 10.0 | 750 | 0.5463 | 0.88 |
78
+ | 0.0036 | 11.0 | 825 | 0.6017 | 0.89 |
79
+ | 0.0016 | 12.0 | 900 | 0.6859 | 0.85 |
80
+ | 0.0014 | 13.0 | 975 | 0.5887 | 0.89 |
81
+ | 0.0012 | 14.0 | 1050 | 0.6525 | 0.9 |
82
+ | 0.0011 | 15.0 | 1125 | 0.6289 | 0.89 |
83
+ | 0.0011 | 16.0 | 1200 | 0.6277 | 0.88 |
84
+ | 0.001 | 17.0 | 1275 | 0.6274 | 0.88 |
85
+ | 0.0611 | 18.0 | 1350 | 0.6266 | 0.88 |
86
+
87
+
88
+ ### Framework versions
89
+
90
+ - Transformers 4.31.0
91
+ - Pytorch 2.0.1+cu118
92
+ - Datasets 2.14.3
93
+ - Tokenizers 0.13.3