vdmbrsv commited on
Commit
729044d
1 Parent(s): 5e7d756

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +168 -191
README.md CHANGED
@@ -1,199 +1,176 @@
1
- ---
2
- library_name: transformers
3
- tags: []
4
- ---
5
-
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
 
12
  ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
 
78
  ### Training Data
79
 
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
 
84
  ### Training Procedure
85
 
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ ---
5
+ ```
6
+ base_model: distilbert/distilbert-base-multilingual-cased
7
+ language: multilingual
8
+ license: apache-2.0
9
+ pipeline_tag: text-classification
10
+ tags:
11
+ - text-classification
12
+ - sentiment-analysis
13
+ - sentiment
14
+ - synthetic data
15
+ - multi-class
16
+ - social-media-analysis
17
+ - customer-feedback
18
+ - product-reviews
19
+ - brand-monitoring
20
+ widget:
21
+ - text: "I absolutely loved this movie! The acting was superb and the plot was engaging."
22
+ example_title: Very Positive Review (English)
23
+ - text: "我讨厌这种无休止的争吵。"
24
+ example_title: Very Negative Review (Chinese)
25
+ - text: "El producto funciona como se espera. Nada especial, pero cumple con su función."
26
+ example_title: Neutral Review (Spanish)
27
+ - text: "هذا الكتاب غير حياتي! لقد تعلمت الكثير منه."
28
+ example_title: Very Positive Review (Arabic)
29
+ - text: "Я разочарован покупкой, это не так хорошо, как я надеялся."
30
+ example_title: Negative Review (Russian)
31
+ inference:
32
+ parameters:
33
+ temperature: 1
34
+ ```
35
+
36
+ # 🚀 distilbert-based Multilingual Sentiment Classification Model
37
+
38
+ TRY IT HERE: https://huggingface.co/spaces/vdmbrsv/sentiment-analysis-english-five-classes
39
+
40
+
41
+ # NEWS!
42
+
43
+ - 2024/12: We are excited to introduce a multilingual sentiment model! Now you can analyze sentiment across multiple languages, enhancing your global reach.
44
+ ```
45
 
46
  ## Model Details
47
+ - `Model Name:` tabularisai/multilingual-sentiment-analysis
48
+ - `Base Model:` distilbert/distilbert-base-multilingual-cased
49
+ - `Task:` Text Classification (Sentiment Analysis)
50
+ - `Languages:` Supports English plus Chinese (中文), Spanish (Español), Hindi (हिन्दी), Arabic (العربية), Bengali (বাংলা), Portuguese (Português), Russian (Русский), Japanese (日本語), German (Deutsch), Malay (Bahasa Melayu), Telugu (తెలుగు), Vietnamese (Tiếng Việt), Korean (한국어), French (Français), Turkish (Türkçe), Italian (Italiano), Polish (Polski), Ukrainian (Українська), Tagalog, Dutch (Nederlands), Swiss German (Schweizerdeutsch).
51
+ - `Number of Classes:` 5 (*Very Negative, Negative, Neutral, Positive, Very Positive*)
52
+ - `Usage:`
53
+ - Social media analysis
54
+ - Customer feedback analysis
55
+ - Product reviews classification
56
+ - Brand monitoring
57
+ - Market research
58
+ - Customer service optimization
59
+ - Competitive intelligence
60
+
61
+ ## Model Description
62
+
63
+ This model is a fine-tuned version of `distilbert/distilbert-base-multilingual-cased` for multilingual sentiment analysis. It leverages synthetic data from multiple sources to achieve robust performance across different languages and cultural contexts.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64
 
65
  ### Training Data
66
 
67
+ Trained exclusively on synthetic multilingual data generated by advanced LLMs, ensuring wide coverage of sentiment expressions from various languages.
 
 
68
 
69
  ### Training Procedure
70
 
71
+ - Fine-tuned for 5 epochs.
72
+ - Achieved a train_acc_off_by_one of approximately 0.93 on the validation dataset.
73
+
74
+ ## Intended Use
75
+
76
+ Ideal for:
77
+ - Multilingual social media monitoring
78
+ - International customer feedback analysis
79
+ - Global product review sentiment classification
80
+ - Worldwide brand sentiment tracking
81
+
82
+ ## How to Use
83
+
84
+ Below is a Python example on how to use the multilingual sentiment model:
85
+
86
+ ```
87
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
88
+ import torch
89
+
90
+ model_name = "tabularisai/multilingual-sentiment-analysis"
91
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
92
+ model = AutoModelForSequenceClassification.from_pretrained(model_name)
93
+
94
+ def predict_sentiment(text):
95
+ inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512)
96
+ with torch.no_grad():
97
+ outputs = model(**inputs)
98
+ probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
99
+ predicted_class = torch.argmax(probabilities, dim=-1).item()
100
+ sentiment_map = {0: "Very Negative", 1: "Negative", 2: "Neutral", 3: "Positive", 4: "Very Positive"}
101
+ return sentiment_map[predicted_class]
102
+
103
+ texts = [
104
+ # English
105
+ "I absolutely loved this movie! The acting was superb and the plot was engaging.",
106
+
107
+ # Chinese
108
+ "我讨厌这种无休止的争吵。",
109
+
110
+ # Spanish
111
+ "El producto funciona como se espera. Nada especial, pero cumple con su función.",
112
+
113
+ # Arabic
114
+ "لم أحب هذا الفيلم على الإطلاق. القصة كانت مملة والشخصيات ضعيفة.",
115
+
116
+ # Ukrainian
117
+ "Я розчарований покупкою, вона не така гарна, як я очікував.",
118
+
119
+ # Hindi
120
+ "यह उत्पाद वास्तव में अद्भुत है! इसका उपयोग करना आसान है औ��� यह मेरे लिए बहुत मददगार रहा।",
121
+
122
+ # Bengali
123
+ "আমি এই রেস্তোরাঁর খাবার পছন্দ করিনি। এটি খুব তেলতেলে এবং অতিরিক্ত রান্না করা।",
124
+
125
+ # Portuguese
126
+ "Este livro é fantástico! Eu aprendi muitas coisas novas e inspiradoras."
127
+ ]
128
+
129
+ for text in texts:
130
+ sentiment = predict_sentiment(text)
131
+ print(f"Text: {text}")
132
+ print(f"Sentiment: {sentiment}\n")
133
+ ```
134
+
135
+ ## Model Performance
136
+
137
+ Example predictions:
138
+
139
+ $$$
140
+ 1. "I absolutely loved this movie! The acting was superb and the plot was engaging."
141
+ Predicted Sentiment: Very Positive (English)
142
+
143
+ 2. "我讨厌这种无休止的争吵。"
144
+ Predicted Sentiment: Very Negative (Chinese)
145
+
146
+ 3. "El producto funciona como se espera. Nada especial, pero cumple con su función."
147
+ Predicted Sentiment: Neutral (Spanish)
148
+
149
+ 4. "هذا الكتاب غير حياتي! لقد تعلمت الكثير منه."
150
+ Predicted Sentiment: Very Positive (Arabic)
151
+
152
+ 5. "Я разочарован покупкой, это не так хорошо, как я надеялся."
153
+ Predicted Sentiment: Negative (Russian)
154
+ $$$
155
+
156
+ ## Training Procedure
157
+
158
+ - Dataset: Synthetic multilingual data
159
+ - Framework: PyTorch Lightning
160
+ - Number of epochs: 5
161
+ - Validation Off-by-one Accuracy: ~0.95
162
+
163
+ ## Ethical Considerations
164
+
165
+ Synthetic data reduces bias, but validation in real-world scenarios is advised.
166
+
167
+ ## Citation
168
+ ```
169
+ Will be included.
170
+ ```
171
+
172
+ ## Contact
173
+
174
+ For inquiries or private APIs, contact info@tabularis.ai
175
+
176
+ tabularis.ai