vdmbrsv commited on
Commit
60fb1a8
·
verified ·
1 Parent(s): 0f284ce

Upload model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 32,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md CHANGED
@@ -1,3 +1,179 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ base_model: sentence-transformers/all-MiniLM-L6-v2
7
+ pipeline_tag: sentence-similarity
8
+ library_name: sentence-transformers
9
+ metrics:
10
+ - pearson_cosine
11
+ - spearman_cosine
12
+ model-index:
13
+ - name: SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
14
+ results:
15
+ - task:
16
+ type: semantic-similarity
17
+ name: Semantic Similarity
18
+ dataset:
19
+ name: Unknown
20
+ type: unknown
21
+ metrics:
22
+ - type: pearson_cosine
23
+ value: 0.6751697498221416
24
+ name: Pearson Cosine
25
+ - type: spearman_cosine
26
+ value: 0.7044137530273638
27
+ name: Spearman Cosine
28
+ ---
29
+
30
+ # SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
31
+
32
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2). It maps sentences & paragraphs to a 32-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
33
+
34
+ ## Model Details
35
+
36
+ ### Model Description
37
+ - **Model Type:** Sentence Transformer
38
+ - **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) <!-- at revision c9745ed1d9f207416be6d2e6f8de32d1f16199bf -->
39
+ - **Maximum Sequence Length:** 128 tokens
40
+ - **Output Dimensionality:** 32 dimensions
41
+ - **Similarity Function:** Cosine Similarity
42
+ <!-- - **Training Dataset:** Unknown -->
43
+ <!-- - **Language:** Unknown -->
44
+ <!-- - **License:** Unknown -->
45
+
46
+ ### Model Sources
47
+
48
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
49
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
50
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
51
+
52
+ ### Full Model Architecture
53
+
54
+ ```
55
+ SentenceTransformer(
56
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
57
+ (1): Pooling({'word_embedding_dimension': 32, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
58
+ )
59
+ ```
60
+
61
+ ## Usage
62
+
63
+ ### Direct Usage (Sentence Transformers)
64
+
65
+ First install the Sentence Transformers library:
66
+
67
+ ```bash
68
+ pip install -U sentence-transformers
69
+ ```
70
+
71
+ Then you can load this model and run inference.
72
+ ```python
73
+ from sentence_transformers import SentenceTransformer
74
+
75
+ # Download from the 🤗 Hub
76
+ model = SentenceTransformer("sentence_transformers_model_id")
77
+ # Run inference
78
+ sentences = [
79
+ 'The weather is lovely today.',
80
+ "It's so sunny outside!",
81
+ 'He drove to the stadium.',
82
+ ]
83
+ embeddings = model.encode(sentences)
84
+ print(embeddings.shape)
85
+ # [3, 32]
86
+
87
+ # Get the similarity scores for the embeddings
88
+ similarities = model.similarity(embeddings, embeddings)
89
+ print(similarities.shape)
90
+ # [3, 3]
91
+ ```
92
+
93
+ <!--
94
+ ### Direct Usage (Transformers)
95
+
96
+ <details><summary>Click to see the direct usage in Transformers</summary>
97
+
98
+ </details>
99
+ -->
100
+
101
+ <!--
102
+ ### Downstream Usage (Sentence Transformers)
103
+
104
+ You can finetune this model on your own dataset.
105
+
106
+ <details><summary>Click to expand</summary>
107
+
108
+ </details>
109
+ -->
110
+
111
+ <!--
112
+ ### Out-of-Scope Use
113
+
114
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
115
+ -->
116
+
117
+ ## Evaluation
118
+
119
+ ### Metrics
120
+
121
+ #### Semantic Similarity
122
+
123
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
124
+
125
+ | Metric | Value |
126
+ |:--------------------|:-----------|
127
+ | pearson_cosine | 0.6752 |
128
+ | **spearman_cosine** | **0.7044** |
129
+
130
+ <!--
131
+ ## Bias, Risks and Limitations
132
+
133
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
134
+ -->
135
+
136
+ <!--
137
+ ### Recommendations
138
+
139
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
140
+ -->
141
+
142
+ ## Training Details
143
+
144
+ ### Training Logs
145
+ | Epoch | Step | spearman_cosine |
146
+ |:-----:|:----:|:---------------:|
147
+ | -1 | -1 | 0.7044 |
148
+
149
+
150
+ ### Framework Versions
151
+ - Python: 3.10.10
152
+ - Sentence Transformers: 4.1.0
153
+ - Transformers: 4.51.3
154
+ - PyTorch: 2.7.0+cu128
155
+ - Accelerate:
156
+ - Datasets: 3.5.1
157
+ - Tokenizers: 0.21.1
158
+
159
+ ## Citation
160
+
161
+ ### BibTeX
162
+
163
+ <!--
164
+ ## Glossary
165
+
166
+ *Clearly define terms in order to be accessible across audiences.*
167
+ -->
168
+
169
+ <!--
170
+ ## Model Card Authors
171
+
172
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
173
+ -->
174
+
175
+ <!--
176
+ ## Model Card Contact
177
+
178
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
179
+ -->
config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertModel"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "classifier_dropout": null,
7
+ "gradient_checkpointing": false,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 32,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 128,
13
+ "layer_norm_eps": 1e-12,
14
+ "max_position_embeddings": 512,
15
+ "model_type": "bert",
16
+ "num_attention_heads": 4,
17
+ "num_hidden_layers": 2,
18
+ "pad_token_id": 0,
19
+ "position_embedding_type": "absolute",
20
+ "torch_dtype": "float32",
21
+ "transformers_version": "4.51.3",
22
+ "type_vocab_size": 2,
23
+ "use_cache": true,
24
+ "vocab_size": 30522
25
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "4.1.0",
4
+ "transformers": "4.51.3",
5
+ "pytorch": "2.7.0+cu128"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a0eebe9a7fdb7680df909b6b46284e4fe5e9549696212c5a5934275f67f40c80
3
+ size 4082832
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": false,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "extra_special_tokens": {},
49
+ "mask_token": "[MASK]",
50
+ "max_length": 128,
51
+ "model_max_length": 128,
52
+ "never_split": null,
53
+ "pad_to_multiple_of": null,
54
+ "pad_token": "[PAD]",
55
+ "pad_token_type_id": 0,
56
+ "padding_side": "right",
57
+ "sep_token": "[SEP]",
58
+ "stride": 0,
59
+ "strip_accents": null,
60
+ "tokenize_chinese_chars": true,
61
+ "tokenizer_class": "BertTokenizer",
62
+ "truncation_side": "right",
63
+ "truncation_strategy": "longest_first",
64
+ "unk_token": "[UNK]"
65
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff