yangsaisai commited on
Commit
cc8a963
·
verified ·
1 Parent(s): fa6e85d

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,207 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ language:
4
+ - zh
5
+ - en
6
+ base_model:
7
+ - Qwen/Qwen3-8B
8
+ ---
9
+
10
+ # TableGPT-R1
11
+
12
+ ## Model details
13
+
14
+ We developed and released TableGPT-R1, a specialized large language model optimized for complex tabular reasoning and data analysis. Unlike traditional models that rely solely on Supervised Fine-Tuning (SFT), TableGPT-R1 is trained using a systematic Reinforcement Learning (RL) framework. It is designed to bridge the gap between natural language understanding and professional data science requirements, such as multi-step logic, robust code execution, and autonomous environment interaction.
15
+
16
+ **Model Developers**
17
+
18
+ Zhejiang University
19
+
20
+ **Key Technical Breakthroughs**
21
+
22
+ * **Autonomous Agentic Reasoning**: The model is trained to "think" before acting. It generates a visible reasoning chain within `<think>` tags, plans Python-based data manipulations, and refines its strategy based on environment feedback (Code Interpreter).
23
+ * **Unified Reward System**: We introduced a hybrid reward mechanism that combines rule-based verification (for deterministic SQL/Code tasks) with a **Criteria-Injected Reward Model** (for open-ended analytical questions), ensuring both accuracy and interpretability.
24
+ * **GRPO++ Framework**: Utilizing an enhanced version of Group Relative Policy Optimization, the model optimizes its decision-making process across diverse table structures while maintaining its general-purpose reasoning capabilities.
25
+ * **Cold-Start Data Engineering**: Bootstrapped with high-quality, long-chain reasoning trajectories, allowing the model to handle extreme table heterogeneity and complex multi-table joins.
26
+
27
+ **Input**
28
+
29
+ TableGPT-R1 accepts both natural language instructions and tabular data. It uniquely supports **table-path inputs**, enabling the model to autonomously load and retrieve information from files using a built-in code interpreter.
30
+
31
+ **Output**
32
+
33
+ TableGPT-R1 supports two output behaviors depending on the task:
34
+
35
+ For tasks requiring logical deduction, metadata explanation, or semantic understanding without external execution.
36
+ * **Format**: `<think> ... </think> [Answer]`
37
+ * **Behavior**: The model performs internal "Chain-of-Thought" to verify its logic before presenting the final result.
38
+
39
+ For data-intensive tasks requiring precise calculation, visualization, or large-scale data processing.
40
+ * **Format**:
41
+ 1. **Plan**: `<think> ... </think>` (Analyze the goal and plan the code)
42
+ 2. **Act**: `<tool_call> ... </tool_call>` (Generate Python/SQL code)
43
+ 3. **Observe**: `<observation> ... </observation>` (Receive environment feedback)
44
+ 4. **Finalize**: `<answer> ... </answer>` (Summarize results)
45
+
46
+ * **Behavior**: The model operates as an autonomous agent, reacting to execution errors or intermediate data results to ensure accuracy.
47
+
48
+ Additionally, to enforce model thinking, the default chat template automatically includes `<think>`. Therefore, it is normal for the model's output to contain only `</think>` without an explicit opening `<think>` tag.
49
+
50
+ **Language**
51
+
52
+ Our model places a strong emphasis on Chinese corpora, and currently, queries in other languages may have limited support.
53
+
54
+ **Model Architecture**
55
+
56
+ TableGPT-R1 is built upon the **Qwen3-8B** transformer architecture, significantly enhanced for long-context tabular understanding and agentic workflows.
57
+
58
+ * **Base Backbone**: Qwen3-8B (Dense Transformer).
59
+ * **Context Window**: 128K tokens, optimized for processing large-scale table schemas, extensive metadata, and long execution logs.
60
+ * **Specialized Tokenizer**: Enhanced to handle structural delimiters, whitespace in tables, and code-specific syntax (Python/SQL) more efficiently.
61
+ * **Agentic Loop Integration**: The architecture is designed to support a seamless **"Think-Act-Observe"** cycle. It treats the environment's feedback (Code Interpreter output) as a first-class sequence input, allowing for real-time error correction and iterative reasoning.
62
+ * **Instruction Following**: Optimized via RL to strictly adhere to formatting constraints, distinguishing between internal thought process and external tool calls.
63
+
64
+ **Status**
65
+
66
+ This model is static, trained on an offline dataset. Future versions may be released to enhance its performance on specialized tasks.
67
+
68
+ **QuickStart**
69
+
70
+ This code snippet demonstrates how to build a prompt with table information, and shows how to load the tokenizer, load the model, and generate content.
71
+
72
+ > Note that you need `transformers>=4.51.0` to use `TableGPT-R1`:
73
+ > ```sh
74
+ > pip install transformers>=4.51.0
75
+ > ```
76
+
77
+
78
+ ```python
79
+ from transformers import AutoModelForCausalLM, AutoTokenizer
80
+
81
+ # Using pandas to read some structured data
82
+ import pandas as pd
83
+ from io import StringIO
84
+
85
+ # single table
86
+ EXAMPLE_CSV_CONTENT = """
87
+ "Loss","Date","Score","Opponent","Record","Attendance"
88
+ "Hampton (14–12)","September 25","8–7","Padres","67–84","31,193"
89
+ "Speier (5–3)","September 26","3–1","Padres","67–85","30,711"
90
+ "Elarton (4–9)","September 22","3–1","@ Expos","65–83","9,707"
91
+ "Lundquist (0–1)","September 24","15–11","Padres","67–83","30,774"
92
+ "Hampton (13–11)","September 6","9–5","Dodgers","61–78","31,407"
93
+ """
94
+
95
+ csv_file = StringIO(EXAMPLE_CSV_CONTENT)
96
+ df = pd.read_csv(csv_file)
97
+
98
+ model_name = "tablegpt/TableGPT-R1"
99
+
100
+ model = AutoModelForCausalLM.from_pretrained(
101
+ model_name, torch_dtype="auto", device_map="auto"
102
+ )
103
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
104
+
105
+ example_prompt_template = """Given access to several pandas dataframes, write the Python code to answer the user's question.
106
+
107
+ /*
108
+ "{var_name}.head(5).to_string(index=False)" as follows:
109
+ {df_info}
110
+ */
111
+
112
+ Question: {user_question}
113
+ """
114
+ question = "哪些比赛的战绩达到了40胜40负?"
115
+
116
+ prompt = example_prompt_template.format(
117
+ var_name="df",
118
+ df_info=df.head(5).to_string(index=False),
119
+ user_question=question,
120
+ )
121
+
122
+ messages = [
123
+ {"role": "system", "content": "You are a helpful assistant."},
124
+ {"role": "user", "content": prompt},
125
+ ]
126
+ text = tokenizer.apply_chat_template(
127
+ messages, tokenize=False, add_generation_prompt=True
128
+ )
129
+ model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
130
+
131
+ generated_ids = model.generate(**model_inputs, max_new_tokens=8192)
132
+ generated_ids = [
133
+ output_ids[len(input_ids) :]
134
+ for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
135
+ ]
136
+
137
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
138
+ ```
139
+
140
+ **Deployment**
141
+
142
+ For deployment, you can use `sglang>=0.5.2` or `vllm>=0.8.5` or to create an OpenAI-compatible API endpoint:
143
+ - SGLang:
144
+ ```shell
145
+ python -m sglang.launch_server --model-path tablegpt/TableGPT-R1 --served-model-name TableGPT-R1 --reasoning-parser qwen3
146
+ ```
147
+ - vLLM:
148
+ ```shell
149
+ vllm serve tablegpt/TableGPT-R1 --served-model-name TableGPT-R1 --enable-reasoning --reasoning-parser deepseek_r1
150
+ ```
151
+
152
+ Then you can access the Chat API by:
153
+
154
+ ```bash
155
+ curl http://localhost:xxx/v1/chat/completions \
156
+ -H "Content-Type: application/json" \
157
+ -d '{
158
+ "model": "TableGPT-R1",
159
+ "messages": [
160
+ {"role": "system", "content": "You are a helpful assistant."},
161
+ {"role": "user", "content": "xxxxx?"}
162
+ ]
163
+ }'
164
+
165
+ ```
166
+
167
+ **License**
168
+
169
+ TableGPT-R1 is under apache-2.0 license.
170
+
171
+ **Research Paper**
172
+
173
+ TableGPT-R1 is introduced and validated in the paper "[TableGPT-R1: Advancing Tabular Reasoning Through Reinforcement Learning](https://arxiv.org/xxxx)" available on arXiv.
174
+
175
+ **Where to send questions or comments about the model**
176
+
177
+ Inquiries and feedback are welcome at [j.zhao@zju.edu.cn](mailto:j.zhao@zju.edu.cn).
178
+
179
+ ## Evaluation Results
180
+
181
+ Performance comparison grouped by model scale. Left Group: Models with comparable
182
+ parameters to TableGPT-R1. Right Group: Significantly larger models and proprietary closed-source
183
+ models. Bold indicates the best result within each group. Gray background highlights TableGPT-R1. Abbreviations: Q3: Qwen3; QwQ: QwQ-32B; DS-V3: DeepSeek-V3; Q-Plus: Qwen-Plus;
184
+ T-LLM: TableLLM; Llama: Llama-3.1-8B; TGPT2: TableGPT2-7B; TGPT-R1: TableGPT-R1-8B;
185
+ FC: Fact Checking; NR: Numerical Reasoning; SC: Structure Comprehending; DA: Data Analysis;
186
+ CG: Chart Generation.
187
+
188
+ | Benchmark | Task | Met. | Q3-8B | T-LLM | Llama | TGPT2 | **TGPT-R1 (8B)** | Q3-14B | Q3-32B | Q3-70B | QwQ | GPT-4o | DS-V3 | Q-Plus |
189
+ | :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
190
+ | **Internal Bench** | Table Info | Acc | 69.20 | 0.97 | 37.26 | - | **82.00** | 66.10 | 72.58 | 51.10 | 69.68 | 67.26 | 66.00 | **76.90** |
191
+ | | Table Path | Acc | 73.90 | 0.65 | 31.77 | - | **85.00** | 74.70 | 78.55 | 60.50 | 75.00 | - | 72.90 | **81.50** |
192
+ | **NL2SQL** | Spider | EX | 86.07 | 65.30 | 73.59 | 74.38 | **86.73** | 87.61 | 87.80 | 61.71 | 85.33 | 87.98 | 88.54 | **89.19** |
193
+ | | BIRD | EX | 61.67 | 30.64 | 40.03 | 49.28 | **63.04** | 61.80 | 63.04 | 53.91 | 54.30 | 65.25 | 65.65 | **68.32** |
194
+ | **Holistic Table** | TableBench DP | Rge | 42.10 | 3.63 | 18.04 | 42.10 | **47.58** | 47.41 | **52.18** | 48.61 | 49.33 | 40.91 | 36.56 | 31.01 |
195
+ | **Evaluation** | PoT | Rge | 28.01 | 0.00 | 6.73 | **39.80** | 34.86 | 36.61 | 37.78 | 27.72 | 40.03 | **51.96** | 33.05 | 41.79 |
196
+ | | SCoT | Rge | 41.86 | 1.99 | 21.94 | 40.70 | **48.68** | 47.36 | 47.47 | 45.68 | 44.84 | 41.43 | **50.11** | 44.06 |
197
+ | | TCoT | Rge | 41.71 | 3.18 | 15.26 | 46.19 | **48.16** | 46.07 | 51.74 | 47.63 | 48.83 | 45.71 | **54.28** | 52.07 |
198
+ | **RealHitBench** | FC | EM | 58.83 | 33.44 | 30.32 | 43.06 | **62.85** | 62.36 | **65.00** | 60.23 | 28.95 | 55.22 | **65.08** | 56.53 |
199
+ | | NR | EM | 39.43 | 13.51 | 18.25 | 31.75 | **44.91** | 45.62 | 47.45 | 42.82 | 42.61 | 48.66 | **53.89** | 49.88 |
200
+
201
+ ## Citation
202
+
203
+ If you find our work helpful, please cite us by
204
+
205
+ ```bibtex
206
+
207
+ ```
added_tokens.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</think>": 151668,
3
+ "</tool_call>": 151658,
4
+ "</tool_response>": 151666,
5
+ "<think>": 151667,
6
+ "<tool_call>": 151657,
7
+ "<tool_response>": 151665,
8
+ "<|box_end|>": 151649,
9
+ "<|box_start|>": 151648,
10
+ "<|endoftext|>": 151643,
11
+ "<|file_sep|>": 151664,
12
+ "<|fim_middle|>": 151660,
13
+ "<|fim_pad|>": 151662,
14
+ "<|fim_prefix|>": 151659,
15
+ "<|fim_suffix|>": 151661,
16
+ "<|im_end|>": 151645,
17
+ "<|im_start|>": 151644,
18
+ "<|image_pad|>": 151655,
19
+ "<|object_ref_end|>": 151647,
20
+ "<|object_ref_start|>": 151646,
21
+ "<|quad_end|>": 151651,
22
+ "<|quad_start|>": 151650,
23
+ "<|repo_name|>": 151663,
24
+ "<|video_pad|>": 151656,
25
+ "<|vision_end|>": 151653,
26
+ "<|vision_pad|>": 151654,
27
+ "<|vision_start|>": 151652
28
+ }
config.json ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "Qwen3ForCausalLM"
4
+ ],
5
+ "attention_bias": false,
6
+ "attention_dropout": 0.0,
7
+ "eos_token_id": 151645,
8
+ "head_dim": 128,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 4096,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 12288,
13
+ "layer_types": [
14
+ "full_attention",
15
+ "full_attention",
16
+ "full_attention",
17
+ "full_attention",
18
+ "full_attention",
19
+ "full_attention",
20
+ "full_attention",
21
+ "full_attention",
22
+ "full_attention",
23
+ "full_attention",
24
+ "full_attention",
25
+ "full_attention",
26
+ "full_attention",
27
+ "full_attention",
28
+ "full_attention",
29
+ "full_attention",
30
+ "full_attention",
31
+ "full_attention",
32
+ "full_attention",
33
+ "full_attention",
34
+ "full_attention",
35
+ "full_attention",
36
+ "full_attention",
37
+ "full_attention",
38
+ "full_attention",
39
+ "full_attention",
40
+ "full_attention",
41
+ "full_attention",
42
+ "full_attention",
43
+ "full_attention",
44
+ "full_attention",
45
+ "full_attention",
46
+ "full_attention",
47
+ "full_attention",
48
+ "full_attention",
49
+ "full_attention"
50
+ ],
51
+ "max_position_embeddings": 40960,
52
+ "max_window_layers": 36,
53
+ "model_type": "qwen3",
54
+ "num_attention_heads": 32,
55
+ "num_hidden_layers": 36,
56
+ "num_key_value_heads": 8,
57
+ "pad_token_id": 151643,
58
+ "rms_norm_eps": 1e-06,
59
+ "rope_scaling": null,
60
+ "rope_theta": 1000000,
61
+ "sliding_window": null,
62
+ "tie_word_embeddings": false,
63
+ "torch_dtype": "bfloat16",
64
+ "transformers_version": "4.53.2",
65
+ "use_cache": false,
66
+ "use_sliding_window": false,
67
+ "vocab_size": 151936
68
+ }
generation_config.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "pad_token_id": 151643,
9
+ "temperature": 0.6,
10
+ "top_k": 20,
11
+ "top_p": 0.95,
12
+ "transformers_version": "4.53.2"
13
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5a2b29d3660346c5716c1edd9c05d056d5800d9eaa6c2afea5b0fe74f299c688
3
+ size 4969365904
model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6f1f90ea284419134623893464ebfc26e2e1b2e93dd08b3117a360b699ced733
3
+ size 4935827608
model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c8d9fbe3cfda62837dc057127521e984402d78432d617a00cf504e3691a1cb19
3
+ size 4915961736
model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:21e69e236513324692cf1cf26725e04b35e2dbf79a309f1afa9ad84693d3ea08
3
+ size 1560361552
model.safetensors.index.json ADDED
@@ -0,0 +1,407 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_parameters": 8190735360,
4
+ "total_size": 16381470720
5
+ },
6
+ "weight_map": {
7
+ "lm_head.weight": "model-00002-of-00004.safetensors",
8
+ "model.embed_tokens.weight": "model-00001-of-00004.safetensors",
9
+ "model.layers.0.input_layernorm.weight": "model-00003-of-00004.safetensors",
10
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
11
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
12
+ "model.layers.0.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
13
+ "model.layers.0.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
14
+ "model.layers.0.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
15
+ "model.layers.0.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
16
+ "model.layers.0.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
17
+ "model.layers.0.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
18
+ "model.layers.0.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
19
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
20
+ "model.layers.1.input_layernorm.weight": "model-00002-of-00004.safetensors",
21
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
22
+ "model.layers.1.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
23
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
24
+ "model.layers.1.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
25
+ "model.layers.1.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
26
+ "model.layers.1.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
27
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
28
+ "model.layers.1.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
29
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
30
+ "model.layers.1.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
31
+ "model.layers.10.input_layernorm.weight": "model-00003-of-00004.safetensors",
32
+ "model.layers.10.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
33
+ "model.layers.10.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
34
+ "model.layers.10.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
35
+ "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
36
+ "model.layers.10.self_attn.k_norm.weight": "model-00004-of-00004.safetensors",
37
+ "model.layers.10.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
38
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
39
+ "model.layers.10.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
40
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
41
+ "model.layers.10.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
42
+ "model.layers.11.input_layernorm.weight": "model-00001-of-00004.safetensors",
43
+ "model.layers.11.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
44
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
45
+ "model.layers.11.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
46
+ "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
47
+ "model.layers.11.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
48
+ "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
49
+ "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
50
+ "model.layers.11.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
51
+ "model.layers.11.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
52
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
53
+ "model.layers.12.input_layernorm.weight": "model-00003-of-00004.safetensors",
54
+ "model.layers.12.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
55
+ "model.layers.12.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
56
+ "model.layers.12.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
57
+ "model.layers.12.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
58
+ "model.layers.12.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
59
+ "model.layers.12.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
60
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
61
+ "model.layers.12.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
62
+ "model.layers.12.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
63
+ "model.layers.12.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
64
+ "model.layers.13.input_layernorm.weight": "model-00001-of-00004.safetensors",
65
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
66
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
67
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
68
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
69
+ "model.layers.13.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
70
+ "model.layers.13.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
71
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
72
+ "model.layers.13.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
73
+ "model.layers.13.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
74
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
75
+ "model.layers.14.input_layernorm.weight": "model-00003-of-00004.safetensors",
76
+ "model.layers.14.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
77
+ "model.layers.14.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
78
+ "model.layers.14.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
79
+ "model.layers.14.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
80
+ "model.layers.14.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
81
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
82
+ "model.layers.14.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
83
+ "model.layers.14.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
84
+ "model.layers.14.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
85
+ "model.layers.14.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
86
+ "model.layers.15.input_layernorm.weight": "model-00004-of-00004.safetensors",
87
+ "model.layers.15.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
88
+ "model.layers.15.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
89
+ "model.layers.15.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
90
+ "model.layers.15.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
91
+ "model.layers.15.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
92
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
93
+ "model.layers.15.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
94
+ "model.layers.15.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
95
+ "model.layers.15.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
96
+ "model.layers.15.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
97
+ "model.layers.16.input_layernorm.weight": "model-00003-of-00004.safetensors",
98
+ "model.layers.16.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
99
+ "model.layers.16.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
100
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
101
+ "model.layers.16.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
102
+ "model.layers.16.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
103
+ "model.layers.16.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
104
+ "model.layers.16.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
105
+ "model.layers.16.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
106
+ "model.layers.16.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
107
+ "model.layers.16.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
108
+ "model.layers.17.input_layernorm.weight": "model-00001-of-00004.safetensors",
109
+ "model.layers.17.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
110
+ "model.layers.17.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
111
+ "model.layers.17.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
112
+ "model.layers.17.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
113
+ "model.layers.17.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
114
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
115
+ "model.layers.17.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
116
+ "model.layers.17.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
117
+ "model.layers.17.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
118
+ "model.layers.17.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
119
+ "model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
120
+ "model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
121
+ "model.layers.18.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
122
+ "model.layers.18.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
123
+ "model.layers.18.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
124
+ "model.layers.18.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
125
+ "model.layers.18.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
126
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
127
+ "model.layers.18.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
128
+ "model.layers.18.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
129
+ "model.layers.18.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
130
+ "model.layers.19.input_layernorm.weight": "model-00004-of-00004.safetensors",
131
+ "model.layers.19.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
132
+ "model.layers.19.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
133
+ "model.layers.19.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
134
+ "model.layers.19.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
135
+ "model.layers.19.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
136
+ "model.layers.19.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
137
+ "model.layers.19.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
138
+ "model.layers.19.self_attn.q_norm.weight": "model-00004-of-00004.safetensors",
139
+ "model.layers.19.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
140
+ "model.layers.19.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
141
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
142
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
143
+ "model.layers.2.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
144
+ "model.layers.2.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
145
+ "model.layers.2.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
146
+ "model.layers.2.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
147
+ "model.layers.2.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
148
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
149
+ "model.layers.2.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
150
+ "model.layers.2.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
151
+ "model.layers.2.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
152
+ "model.layers.20.input_layernorm.weight": "model-00001-of-00004.safetensors",
153
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
154
+ "model.layers.20.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
155
+ "model.layers.20.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
156
+ "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
157
+ "model.layers.20.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
158
+ "model.layers.20.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
159
+ "model.layers.20.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
160
+ "model.layers.20.self_attn.q_norm.weight": "model-00004-of-00004.safetensors",
161
+ "model.layers.20.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
162
+ "model.layers.20.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
163
+ "model.layers.21.input_layernorm.weight": "model-00001-of-00004.safetensors",
164
+ "model.layers.21.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
165
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
166
+ "model.layers.21.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
167
+ "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
168
+ "model.layers.21.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
169
+ "model.layers.21.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
170
+ "model.layers.21.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
171
+ "model.layers.21.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
172
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
173
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
174
+ "model.layers.22.input_layernorm.weight": "model-00002-of-00004.safetensors",
175
+ "model.layers.22.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
176
+ "model.layers.22.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
177
+ "model.layers.22.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
178
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
179
+ "model.layers.22.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
180
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
181
+ "model.layers.22.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
182
+ "model.layers.22.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
183
+ "model.layers.22.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
184
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
185
+ "model.layers.23.input_layernorm.weight": "model-00001-of-00004.safetensors",
186
+ "model.layers.23.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
187
+ "model.layers.23.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
188
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
189
+ "model.layers.23.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
190
+ "model.layers.23.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
191
+ "model.layers.23.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
192
+ "model.layers.23.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
193
+ "model.layers.23.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
194
+ "model.layers.23.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
195
+ "model.layers.23.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
196
+ "model.layers.24.input_layernorm.weight": "model-00001-of-00004.safetensors",
197
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
198
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
199
+ "model.layers.24.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
200
+ "model.layers.24.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
201
+ "model.layers.24.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
202
+ "model.layers.24.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
203
+ "model.layers.24.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
204
+ "model.layers.24.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
205
+ "model.layers.24.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
206
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
207
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
208
+ "model.layers.25.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
209
+ "model.layers.25.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
210
+ "model.layers.25.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
211
+ "model.layers.25.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
212
+ "model.layers.25.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
213
+ "model.layers.25.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
214
+ "model.layers.25.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
215
+ "model.layers.25.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
216
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
217
+ "model.layers.25.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
218
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
219
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
220
+ "model.layers.26.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
221
+ "model.layers.26.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
222
+ "model.layers.26.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
223
+ "model.layers.26.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
224
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
225
+ "model.layers.26.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
226
+ "model.layers.26.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
227
+ "model.layers.26.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
228
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
229
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
230
+ "model.layers.27.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
231
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
232
+ "model.layers.27.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
233
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
234
+ "model.layers.27.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
235
+ "model.layers.27.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
236
+ "model.layers.27.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
237
+ "model.layers.27.self_attn.q_norm.weight": "model-00004-of-00004.safetensors",
238
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
239
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
240
+ "model.layers.28.input_layernorm.weight": "model-00002-of-00004.safetensors",
241
+ "model.layers.28.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
242
+ "model.layers.28.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
243
+ "model.layers.28.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
244
+ "model.layers.28.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
245
+ "model.layers.28.self_attn.k_norm.weight": "model-00004-of-00004.safetensors",
246
+ "model.layers.28.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
247
+ "model.layers.28.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
248
+ "model.layers.28.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
249
+ "model.layers.28.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
250
+ "model.layers.28.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
251
+ "model.layers.29.input_layernorm.weight": "model-00002-of-00004.safetensors",
252
+ "model.layers.29.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
253
+ "model.layers.29.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
254
+ "model.layers.29.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
255
+ "model.layers.29.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
256
+ "model.layers.29.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
257
+ "model.layers.29.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
258
+ "model.layers.29.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
259
+ "model.layers.29.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
260
+ "model.layers.29.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
261
+ "model.layers.29.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
262
+ "model.layers.3.input_layernorm.weight": "model-00003-of-00004.safetensors",
263
+ "model.layers.3.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
264
+ "model.layers.3.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
265
+ "model.layers.3.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
266
+ "model.layers.3.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
267
+ "model.layers.3.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
268
+ "model.layers.3.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
269
+ "model.layers.3.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
270
+ "model.layers.3.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
271
+ "model.layers.3.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
272
+ "model.layers.3.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
273
+ "model.layers.30.input_layernorm.weight": "model-00004-of-00004.safetensors",
274
+ "model.layers.30.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
275
+ "model.layers.30.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
276
+ "model.layers.30.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
277
+ "model.layers.30.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
278
+ "model.layers.30.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
279
+ "model.layers.30.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
280
+ "model.layers.30.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
281
+ "model.layers.30.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
282
+ "model.layers.30.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
283
+ "model.layers.30.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
284
+ "model.layers.31.input_layernorm.weight": "model-00003-of-00004.safetensors",
285
+ "model.layers.31.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
286
+ "model.layers.31.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
287
+ "model.layers.31.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
288
+ "model.layers.31.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
289
+ "model.layers.31.self_attn.k_norm.weight": "model-00004-of-00004.safetensors",
290
+ "model.layers.31.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
291
+ "model.layers.31.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
292
+ "model.layers.31.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
293
+ "model.layers.31.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
294
+ "model.layers.31.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
295
+ "model.layers.32.input_layernorm.weight": "model-00003-of-00004.safetensors",
296
+ "model.layers.32.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
297
+ "model.layers.32.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
298
+ "model.layers.32.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
299
+ "model.layers.32.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
300
+ "model.layers.32.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
301
+ "model.layers.32.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
302
+ "model.layers.32.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
303
+ "model.layers.32.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
304
+ "model.layers.32.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
305
+ "model.layers.32.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
306
+ "model.layers.33.input_layernorm.weight": "model-00001-of-00004.safetensors",
307
+ "model.layers.33.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
308
+ "model.layers.33.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
309
+ "model.layers.33.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
310
+ "model.layers.33.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
311
+ "model.layers.33.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
312
+ "model.layers.33.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
313
+ "model.layers.33.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
314
+ "model.layers.33.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
315
+ "model.layers.33.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
316
+ "model.layers.33.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
317
+ "model.layers.34.input_layernorm.weight": "model-00002-of-00004.safetensors",
318
+ "model.layers.34.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
319
+ "model.layers.34.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
320
+ "model.layers.34.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
321
+ "model.layers.34.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
322
+ "model.layers.34.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
323
+ "model.layers.34.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
324
+ "model.layers.34.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
325
+ "model.layers.34.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
326
+ "model.layers.34.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
327
+ "model.layers.34.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
328
+ "model.layers.35.input_layernorm.weight": "model-00003-of-00004.safetensors",
329
+ "model.layers.35.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
330
+ "model.layers.35.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
331
+ "model.layers.35.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
332
+ "model.layers.35.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
333
+ "model.layers.35.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
334
+ "model.layers.35.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
335
+ "model.layers.35.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
336
+ "model.layers.35.self_attn.q_norm.weight": "model-00002-of-00004.safetensors",
337
+ "model.layers.35.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
338
+ "model.layers.35.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
339
+ "model.layers.4.input_layernorm.weight": "model-00003-of-00004.safetensors",
340
+ "model.layers.4.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
341
+ "model.layers.4.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
342
+ "model.layers.4.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
343
+ "model.layers.4.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
344
+ "model.layers.4.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
345
+ "model.layers.4.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
346
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
347
+ "model.layers.4.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
348
+ "model.layers.4.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
349
+ "model.layers.4.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
350
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
351
+ "model.layers.5.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
352
+ "model.layers.5.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
353
+ "model.layers.5.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
354
+ "model.layers.5.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
355
+ "model.layers.5.self_attn.k_norm.weight": "model-00002-of-00004.safetensors",
356
+ "model.layers.5.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
357
+ "model.layers.5.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
358
+ "model.layers.5.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
359
+ "model.layers.5.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
360
+ "model.layers.5.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
361
+ "model.layers.6.input_layernorm.weight": "model-00004-of-00004.safetensors",
362
+ "model.layers.6.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
363
+ "model.layers.6.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
364
+ "model.layers.6.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
365
+ "model.layers.6.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
366
+ "model.layers.6.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
367
+ "model.layers.6.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
368
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
369
+ "model.layers.6.self_attn.q_norm.weight": "model-00003-of-00004.safetensors",
370
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
371
+ "model.layers.6.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
372
+ "model.layers.7.input_layernorm.weight": "model-00002-of-00004.safetensors",
373
+ "model.layers.7.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
374
+ "model.layers.7.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
375
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
376
+ "model.layers.7.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
377
+ "model.layers.7.self_attn.k_norm.weight": "model-00001-of-00004.safetensors",
378
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
379
+ "model.layers.7.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
380
+ "model.layers.7.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
381
+ "model.layers.7.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
382
+ "model.layers.7.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
383
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00004.safetensors",
384
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
385
+ "model.layers.8.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
386
+ "model.layers.8.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
387
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
388
+ "model.layers.8.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
389
+ "model.layers.8.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
390
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
391
+ "model.layers.8.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
392
+ "model.layers.8.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
393
+ "model.layers.8.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
394
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
395
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
396
+ "model.layers.9.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
397
+ "model.layers.9.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
398
+ "model.layers.9.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
399
+ "model.layers.9.self_attn.k_norm.weight": "model-00003-of-00004.safetensors",
400
+ "model.layers.9.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
401
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
402
+ "model.layers.9.self_attn.q_norm.weight": "model-00001-of-00004.safetensors",
403
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
404
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
405
+ "model.norm.weight": "model-00003-of-00004.safetensors"
406
+ }
407
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aeb13307a71acd8fe81861d94ad54ab689df773318809eed3cbe794b4492dae4
3
+ size 11422654
tokenizer_config.json ADDED
@@ -0,0 +1,239 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "151643": {
5
+ "content": "<|endoftext|>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "151644": {
13
+ "content": "<|im_start|>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "151645": {
21
+ "content": "<|im_end|>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "151646": {
29
+ "content": "<|object_ref_start|>",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "151647": {
37
+ "content": "<|object_ref_end|>",
38
+ "lstrip": false,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ },
44
+ "151648": {
45
+ "content": "<|box_start|>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false,
50
+ "special": true
51
+ },
52
+ "151649": {
53
+ "content": "<|box_end|>",
54
+ "lstrip": false,
55
+ "normalized": false,
56
+ "rstrip": false,
57
+ "single_word": false,
58
+ "special": true
59
+ },
60
+ "151650": {
61
+ "content": "<|quad_start|>",
62
+ "lstrip": false,
63
+ "normalized": false,
64
+ "rstrip": false,
65
+ "single_word": false,
66
+ "special": true
67
+ },
68
+ "151651": {
69
+ "content": "<|quad_end|>",
70
+ "lstrip": false,
71
+ "normalized": false,
72
+ "rstrip": false,
73
+ "single_word": false,
74
+ "special": true
75
+ },
76
+ "151652": {
77
+ "content": "<|vision_start|>",
78
+ "lstrip": false,
79
+ "normalized": false,
80
+ "rstrip": false,
81
+ "single_word": false,
82
+ "special": true
83
+ },
84
+ "151653": {
85
+ "content": "<|vision_end|>",
86
+ "lstrip": false,
87
+ "normalized": false,
88
+ "rstrip": false,
89
+ "single_word": false,
90
+ "special": true
91
+ },
92
+ "151654": {
93
+ "content": "<|vision_pad|>",
94
+ "lstrip": false,
95
+ "normalized": false,
96
+ "rstrip": false,
97
+ "single_word": false,
98
+ "special": true
99
+ },
100
+ "151655": {
101
+ "content": "<|image_pad|>",
102
+ "lstrip": false,
103
+ "normalized": false,
104
+ "rstrip": false,
105
+ "single_word": false,
106
+ "special": true
107
+ },
108
+ "151656": {
109
+ "content": "<|video_pad|>",
110
+ "lstrip": false,
111
+ "normalized": false,
112
+ "rstrip": false,
113
+ "single_word": false,
114
+ "special": true
115
+ },
116
+ "151657": {
117
+ "content": "<tool_call>",
118
+ "lstrip": false,
119
+ "normalized": false,
120
+ "rstrip": false,
121
+ "single_word": false,
122
+ "special": false
123
+ },
124
+ "151658": {
125
+ "content": "</tool_call>",
126
+ "lstrip": false,
127
+ "normalized": false,
128
+ "rstrip": false,
129
+ "single_word": false,
130
+ "special": false
131
+ },
132
+ "151659": {
133
+ "content": "<|fim_prefix|>",
134
+ "lstrip": false,
135
+ "normalized": false,
136
+ "rstrip": false,
137
+ "single_word": false,
138
+ "special": false
139
+ },
140
+ "151660": {
141
+ "content": "<|fim_middle|>",
142
+ "lstrip": false,
143
+ "normalized": false,
144
+ "rstrip": false,
145
+ "single_word": false,
146
+ "special": false
147
+ },
148
+ "151661": {
149
+ "content": "<|fim_suffix|>",
150
+ "lstrip": false,
151
+ "normalized": false,
152
+ "rstrip": false,
153
+ "single_word": false,
154
+ "special": false
155
+ },
156
+ "151662": {
157
+ "content": "<|fim_pad|>",
158
+ "lstrip": false,
159
+ "normalized": false,
160
+ "rstrip": false,
161
+ "single_word": false,
162
+ "special": false
163
+ },
164
+ "151663": {
165
+ "content": "<|repo_name|>",
166
+ "lstrip": false,
167
+ "normalized": false,
168
+ "rstrip": false,
169
+ "single_word": false,
170
+ "special": false
171
+ },
172
+ "151664": {
173
+ "content": "<|file_sep|>",
174
+ "lstrip": false,
175
+ "normalized": false,
176
+ "rstrip": false,
177
+ "single_word": false,
178
+ "special": false
179
+ },
180
+ "151665": {
181
+ "content": "<tool_response>",
182
+ "lstrip": false,
183
+ "normalized": false,
184
+ "rstrip": false,
185
+ "single_word": false,
186
+ "special": false
187
+ },
188
+ "151666": {
189
+ "content": "</tool_response>",
190
+ "lstrip": false,
191
+ "normalized": false,
192
+ "rstrip": false,
193
+ "single_word": false,
194
+ "special": false
195
+ },
196
+ "151667": {
197
+ "content": "<think>",
198
+ "lstrip": false,
199
+ "normalized": false,
200
+ "rstrip": false,
201
+ "single_word": false,
202
+ "special": false
203
+ },
204
+ "151668": {
205
+ "content": "</think>",
206
+ "lstrip": false,
207
+ "normalized": false,
208
+ "rstrip": false,
209
+ "single_word": false,
210
+ "special": false
211
+ }
212
+ },
213
+ "additional_special_tokens": [
214
+ "<|im_start|>",
215
+ "<|im_end|>",
216
+ "<|object_ref_start|>",
217
+ "<|object_ref_end|>",
218
+ "<|box_start|>",
219
+ "<|box_end|>",
220
+ "<|quad_start|>",
221
+ "<|quad_end|>",
222
+ "<|vision_start|>",
223
+ "<|vision_end|>",
224
+ "<|vision_pad|>",
225
+ "<|image_pad|>",
226
+ "<|video_pad|>"
227
+ ],
228
+ "bos_token": null,
229
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0].role == 'system' %}\n {{- messages[0].content + '\\n\\n' }}\n {%- endif %}\n {{- \"# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0].role == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0].content + '<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- set ns = namespace(multi_step_tool=true, last_query_index=messages|length - 1) %}\n{%- for message in messages[::-1] %}\n {%- set index = (messages|length - 1) - loop.index0 %}\n {%- if ns.multi_step_tool and message.role == \"user\" and message.content is string and not(message.content.startswith('<tool_response>') and message.content.endswith('</tool_response>')) %}\n {%- set ns.multi_step_tool = false %}\n {%- set ns.last_query_index = index %}\n {%- endif %}\n{%- endfor %}\n{%- for message in messages %}\n {%- if message.content is string %}\n {%- set content = message.content %}\n {%- else %}\n {%- set content = '' %}\n {%- endif %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) %}\n {{- '<|im_start|>' + message.role + '\\n' + content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {%- set reasoning_content = '' %}\n {%- if message.reasoning_content is string %}\n {%- set reasoning_content = message.reasoning_content %}\n {%- else %}\n {%- if '</think>' in content %}\n {%- set reasoning_content = content.split('</think>')[0].rstrip('\\n').split('<think>')[-1].lstrip('\\n') %}\n {%- set content = content.split('</think>')[-1].lstrip('\\n') %}\n {%- endif %}\n {%- endif %}\n {%- if reasoning_content %}\n {{- '<|im_start|>' + message.role + '\\n<think>\\n' + reasoning_content.strip('\\n') + '\\n</think>\\n\\n' + content.lstrip('\\n') }}\n {%- else %}\n {{- '<|im_start|>' + message.role + '\\n' + content }}\n {%- endif %}\n {%- if message.tool_calls %}\n {%- for tool_call in message.tool_calls %}\n {%- if (loop.first and content) or (not loop.first) %}\n {{- '\\n' }}\n {%- endif %}\n {%- if tool_call.function %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {%- if tool_call.arguments is string %}\n {{- tool_call.arguments }}\n {%- else %}\n {{- tool_call.arguments | tojson }}\n {%- endif %}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {%- endif %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if loop.first or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n<think>\\n' }}\n{%- endif %}",
230
+ "clean_up_tokenization_spaces": false,
231
+ "eos_token": "<|im_end|>",
232
+ "errors": "replace",
233
+ "model_max_length": 262144,
234
+ "pad_token": "<|endoftext|>",
235
+ "split_special_tokens": false,
236
+ "tokenizer_class": "Qwen2Tokenizer",
237
+ "unk_token": null,
238
+ "add_bos_token": false
239
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff