Update README.md
Browse files
README.md
CHANGED
@@ -1,71 +1,7 @@
|
|
1 |
-
|
2 |
-
license: apache-2.0
|
3 |
-
tags:
|
4 |
-
- dino
|
5 |
-
- vision
|
6 |
-
datasets:
|
7 |
-
- imagenet-1k
|
8 |
-
---
|
9 |
|
10 |
-
|
11 |
|
12 |
-
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
## Model description
|
17 |
-
|
18 |
-
The Vision Transformer (ViT) is a transformer encoder model (BERT-like) pretrained on a large collection of images in a self-supervised fashion, namely ImageNet-1k, at a resolution of 224x224 pixels.
|
19 |
-
|
20 |
-
Images are presented to the model as a sequence of fixed-size patches (resolution 8x8), which are linearly embedded. One also adds a [CLS] token to the beginning of a sequence to use it for classification tasks. One also adds absolute position embeddings before feeding the sequence to the layers of the Transformer encoder.
|
21 |
-
|
22 |
-
Note that this model does not include any fine-tuned heads.
|
23 |
-
|
24 |
-
By pre-training the model, it learns an inner representation of images that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled images for instance, you can train a standard classifier by placing a linear layer on top of the pre-trained encoder. One typically places a linear layer on top of the [CLS] token, as the last hidden state of this token can be seen as a representation of an entire image.
|
25 |
-
|
26 |
-
## Intended uses & limitations
|
27 |
-
|
28 |
-
You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=google/vit) to look for
|
29 |
-
fine-tuned versions on a task that interests you.
|
30 |
-
|
31 |
-
### How to use
|
32 |
-
|
33 |
-
Here is how to use this model:
|
34 |
-
|
35 |
-
|
36 |
-
from transformers import ViTImageProcessor, ViTModel
|
37 |
-
from PIL import Image
|
38 |
-
import requests
|
39 |
-
|
40 |
-
url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
|
41 |
-
image = Image.open(requests.get(url, stream=True).raw)
|
42 |
-
|
43 |
-
processor = ViTImageProcessor.from_pretrained('facebook/dino-vits8')
|
44 |
-
model = ViTModel.from_pretrained('facebook/dino-vits8')
|
45 |
-
|
46 |
-
inputs = processor(images=image, return_tensors="pt")
|
47 |
-
outputs = model(**inputs)
|
48 |
-
last_hidden_states = outputs.last_hidden_state
|
49 |
-
、##ion info
|
50 |
-
|
51 |
-
```bibtex443333
|
52 |
-
@article{DBLP:journals/corr/abs-2104-14294,
|
53 |
-
author = {Mathilde Caron and
|
54 |
-
Hugo Touvron and
|
55 |
-
Ishan Misra and
|
56 |
-
Herv{\'{e}} J{\'{e}}gou and
|
57 |
-
Julien Mairal and
|
58 |
-
Piotr Bojanowski and
|
59 |
-
Armand Joulin},
|
60 |
-
title = {Emerging Properties in Self-Supervised Vision Transformers},
|
61 |
-
journal = {CoRR},
|
62 |
-
volume = {abs/2104.14294},
|
63 |
-
year = {2021},
|
64 |
-
url = {https://arxiv.org/abs/2104.14294},
|
65 |
-
archivePrefix = {arXiv},
|
66 |
-
eprint = {2104.14294},
|
67 |
-
timestamp = {Tue, 04 May 2021 15:12:43 +0200},
|
68 |
-
biburl = {https://dblp.org/rec/journals/corr/abs-2104-14294.bib},
|
69 |
-
bibsource = {dblp computer science bibliography, https://dblp.org}
|
70 |
-
}
|
71 |
-
```
|
|
|
1 |
+
VIDIA DRIVE AGX 是一个可扩展的开放式自动驾驶汽车计算平台,充当自动驾驶汽车的大脑。作为同类产品中硬件平台的佼佼者,NVIDIA DRIVE AGX 为功能安全的人工智能自动驾 驶提供高性能、高能效的计算。硬件方面,NVIDIA DRIVE 嵌入式超级计算平台处理来自摄像头、普通雷达和激光雷达传 感器的数据,以感知周围环境、在地图上确定汽车的位置,然后规划并执行安全的行车路线。软件方面,NVIDIA DRIVE AGX 具备可扩展和软件定义特性,平台能够提供先进的性能, 助力自动驾驶汽车处理大量传感器数据,并做出实时驾驶决策。开放式 NVIDIA DRIVE 软件 栈还可帮助开发者使用冗余和多样化的深度神经网络 (DNN),构建感知、建图、规划和驾驶 员监控功能。通过持续迭代和无线更新,该平台变得日益强大。同时,开放式 NVIDIA DRIVE SDK 为开发者提供了自动驾驶所需的所有构建块和算法堆栈。该软件有助于开发者更高效地 构建和部署各种先进的自动驾驶应用程序,包括感知、定位和地图绘制、计划和控制、驾驶 员监控和自然语言处理。本文将分几个章节以当前应用最为广泛的主流英伟达芯片 Orin x 为例,分别从硬件和软 件两个方向来说明如何进行从软到硬件级别的开发和应用。
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
+
1 英伟达内部架构设计
|
4 |
|
5 |
+
以 Orin-x 为例,其中的 CPU 包括基于 Arm Cortex-A78AE 的主CPU 复合体,它提供通用高速计算能力;以及基于 Arm Cortex-R52 的功能安全岛(FSI),它提供了隔离的片上计算资源, 减少了对外部 ASIL D 功能安全 CPU 处理的需求。
|
6 |
|
7 |
+
GPU 则是 NVIDIA®Ampere GPU,为 CUDA 语言提供高级并行处理计算能力,并支持多种工具, 如 TensorRT,一种深度学习推理优化器和运行时,可提供低延迟和高吞吐量。Ampere 还
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|