syubraj commited on
Commit
3226321
·
verified ·
1 Parent(s): fdbe4d7

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +80 -153
README.md CHANGED
@@ -1,15 +1,29 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
  # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
 
9
 
10
 
11
 
12
- ## Model Details
13
 
14
  ### Model Description
15
 
@@ -17,13 +31,10 @@ tags: []
17
 
18
  This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
  ### Model Sources [optional]
29
 
@@ -33,167 +44,83 @@ This is the model card of a 🤗 transformers model that has been pushed on the
33
  - **Paper [optional]:** [More Information Needed]
34
  - **Demo [optional]:** [More Information Needed]
35
 
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
 
70
  ## How to Get Started with the Model
71
 
72
  Use the code below to get started with the model.
73
 
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
 
107
- ### Testing Data, Factors & Metrics
 
 
108
 
109
- #### Testing Data
 
110
 
111
- <!-- This should link to a Dataset Card if possible. -->
 
 
112
 
113
- [More Information Needed]
 
114
 
115
- #### Factors
 
 
116
 
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
 
 
 
 
118
 
119
- [More Information Needed]
120
 
121
- #### Metrics
122
 
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
 
189
- ## More Information [optional]
190
 
191
- [More Information Needed]
192
 
193
- ## Model Card Authors [optional]
194
 
195
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ tags:
4
+ - nepali
5
+ - roman english
6
+ - translation
7
+ - transliteration
8
+ license: apache-2.0
9
+ datasets:
10
+ - syubraj/roman2nepali-transliteration
11
+ language:
12
+ - ne
13
+ - en
14
+ base_model:
15
+ - google/mt5-small
16
+ new_version: syubraj/romaneng2nep
17
+ pipeline_tag: translation
18
  ---
19
 
20
  # Model Card for Model ID
21
 
22
+ Model Trained for 8500 steps on <110k dataset.
23
+
24
 
25
 
26
 
 
27
 
28
  ### Model Description
29
 
 
31
 
32
  This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
33
 
34
+ - **Model type:** (google/mt5-small)
35
+ - **Language(s) (NLP, Nepali, English):**
36
+ - **License:** [Apache license 2.0]
37
+ - **Finetuned from model [google/mt5-small]:**
 
 
 
38
 
39
  ### Model Sources [optional]
40
 
 
44
  - **Paper [optional]:** [More Information Needed]
45
  - **Demo [optional]:** [More Information Needed]
46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47
 
48
  ## How to Get Started with the Model
49
 
50
  Use the code below to get started with the model.
51
 
52
+ ```Python
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53
 
54
+ from transformers import AutoTokenizer, MT5ForConditionalGeneration
55
 
56
+ checkpoint = "syubraj/RomanEng2Nep-v2"
57
+ tokenizer = AutoTokenizer.from_pretrained(checkpoint)
58
+ model = MT5ForConditionalGeneration.from_pretrained(checkpoint)
59
 
60
+ # Set max sequence length
61
+ max_seq_len = 20
62
 
63
+ def translate(text):
64
+ # Tokenize the input text with a max length of 20
65
+ inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=max_seq_len)
66
 
67
+ # Generate translation
68
+ translated = model.generate(**inputs)
69
 
70
+ # Decode the translated tokens back to text
71
+ translated_text = tokenizer.decode(translated[0], skip_special_tokens=True)
72
+ return translated_text
73
 
74
+ # Example usage
75
+ source_text = "timilai kasto cha?" # Example Romanized Nepali text
76
+ translated_text = translate(source_text)
77
+ print(f"Translated Text: {translated_text}")
78
+ ```
79
 
 
80
 
 
81
 
82
+ ### Training Data
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83
 
84
+ [syubraj/roman2nepali-transliteration](https://huggingface.co/datasets/syubraj/roman2nepali-transliteration)
85
 
 
86
 
87
+ #### Training Hyperparameters
88
 
89
+ - **Training regime:**
90
+ ```Python
91
+ training_args = Seq2SeqTrainingArguments(
92
+ output_dir="/content/drive/MyDrive/romaneng2nep_v2/",
93
+ eval_strategy="steps",
94
+ learning_rate=2e-5,
95
+ per_device_train_batch_size=16,
96
+ per_device_eval_batch_size=8,
97
+ weight_decay=0.01,
98
+ save_total_limit=3,
99
+ num_train_epochs=2,
100
+ predict_with_generate=True,
101
+ )
102
+ ```
103
+
104
+ ## Training and Validation Metrics
105
+
106
+ | Step | Training Loss | Validation Loss | Gen Len |
107
+ |------|---------------|-----------------|---------|
108
+ | 500 | 21.636200 | 9.776628 | 2.001900 |
109
+ | 1000 | 10.103400 | 6.105016 | 2.077900 |
110
+ | 1500 | 6.830800 | 5.081259 | 3.811600 |
111
+ | 2000 | 6.003100 | 4.702793 | 4.237300 |
112
+ | 2500 | 5.690200 | 4.469123 | 4.700000 |
113
+ | 3000 | 5.443100 | 4.274406 | 4.808300 |
114
+ | 3500 | 5.265300 | 4.121417 | 4.749400 |
115
+ | 4000 | 5.128500 | 3.989708 | 4.782300 |
116
+ | 4500 | 5.007200 | 3.885391 | 4.805100 |
117
+ | 5000 | 4.909600 | 3.787640 | 4.874800 |
118
+ | 5500 | 4.836000 | 3.715750 | 4.855500 |
119
+ | 6000 | 4.733000 | 3.640963 | 4.962000 |
120
+ | 6500 | 4.673500 | 3.587330 | 5.011600 |
121
+ | 7000 | 4.623800 | 3.531883 | 5.068300 |
122
+ | 7500 | 4.567400 | 3.481622 | 5.108500 |
123
+ | 8000 | 4.523200 | 3.445404 | 5.092700 |
124
+ | 8500 | 4.464000 | 3.413630 | 5.132700 |
125
 
 
126