Initial test with 10 iterations
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- spaceship_500000.zip +3 -0
- spaceship_500000/_stable_baselines3_version +1 -0
- spaceship_500000/data +94 -0
- spaceship_500000/policy.optimizer.pth +3 -0
- spaceship_500000/policy.pth +3 -0
- spaceship_500000/pytorch_variables.pth +3 -0
- spaceship_500000/system_info.txt +7 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: -1497.94 +/- 644.26
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8d69cc7ef0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8d69cc7f80>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8d69c50050>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8d69c500e0>", "_build": "<function ActorCriticPolicy._build at 0x7f8d69c50170>", "forward": "<function ActorCriticPolicy.forward at 0x7f8d69c50200>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8d69c50290>", "_predict": "<function ActorCriticPolicy._predict at 0x7f8d69c50320>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8d69c503b0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8d69c50440>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8d69c504d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f8d69ca70f0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 32768, "_total_timesteps": 10, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652028072.0409198, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABUq1r7zKaM+amT8vpkRib/QzDK+2q4ZPQAAAAAAAAAASmm0PrV47b0G2lY/FKOuv8LDUb96Ri8/AACAPwAAAADNRXU+ffmKP1FtLj6B+wy/CHIJPrbFaz0AAAAAAAAAAAB/uD1xi3s/yhXFPuQrOb+uq4C+FcrevQAAAAAAAAAAmtFTvOGxtj96oii/6s6zPq48hjzM1zY+AAAAAAAAAADGaBM+oPoaP7etmD4lKoS/a+yIvctA3rwAAAAAAAAAAHD3X76c86c+AfG8vg7HiL+HIY0+nps2vQAAAAAAAAAAk9ihvknpgz/o/HK/0A5Kv/a9Uj+HwYU+AAAAAAAAAABhgXa/qdsFPW1for/f07u/Ou9XP5/+sr0AAAAAAAAAAHPm7774rHA/a0SAvycKi7/oXr4/mgIEPwAAAAAAAAAADWDuPRRoGz+givA+c86Fv/79fr86BP++AAAAAAAAAAC++oe+FJDAP8jgZr9JDRq+UsdwPlzmFz4AAAAAAAAAAJpxIj65is4/xYzHPo/rvj1EVQI9+1aMvQAAAAAAAAAA/b/LviTipz97Foe/PRIPv6y+dT/CR58+AAAAAAAAAACA1RK9KEOTP7JB7L2eow2/8xKnPZ0svL0AAAAAAAAAAJpmI75Ygys/cEvqvu2rdL9F8SM/W9ZKPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -3275.8, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIiq92FOecXcCUhpRSlIwBbJRLU4wBdJRHQGc9yHmA9V51fZQoaAZoCWgPQwjqr1dYcFtewJSGlFKUaBVLdWgWR0BnP27e2uxKdX2UKGgGaAloD0MIaY6s/DKpXcCUhpRSlGgVS2NoFkdAZ0Crp7kXDXV9lChoBmgJaA9DCO9v0F59kGzAlIaUUpRoFUtOaBZHQGdCH6l+Eyt1fZQoaAZoCWgPQwinejL/6BhZwJSGlFKUaBVLbmgWR0BnRJCfHxSYdX2UKGgGaAloD0MIkj8YeO55W8CUhpRSlGgVS2poFkdAZ0ReWOZLI3V9lChoBmgJaA9DCMb4MHtZsmPAlIaUUpRoFUtSaBZHQGdGBdUsFt91fZQoaAZoCWgPQwgaGeQuwjhXwJSGlFKUaBVLQGgWR0BnRiVGCqZMdX2UKGgGaAloD0MILH5TWKkWXcCUhpRSlGgVS1xoFkdAZ0dHH3lCC3V9lChoBmgJaA9DCPWAeciUOFTAlIaUUpRoFUtHaBZHQGdIYkmhM8J1fZQoaAZoCWgPQwhw7xr0JVhmwJSGlFKUaBVLYGgWR0BnSOEh7mdRdX2UKGgGaAloD0MI2gOtwJAWXsCUhpRSlGgVS0FoFkdAZ0kkHD766HV9lChoBmgJaA9DCNlg4STNplzAlIaUUpRoFUs/aBZHQGdKS/sVtXR1fZQoaAZoCWgPQwjImpFBbhV1wJSGlFKUaBVLaWgWR0BnSx+SbH6udX2UKGgGaAloD0MIWAIpsWvNWMCUhpRSlGgVS0ZoFkdAZ0zn3+MqBnV9lChoBmgJaA9DCBrBxvVvq3LAlIaUUpRoFUtsaBZHQGdOR77bcoJ1fZQoaAZoCWgPQwhJn1bRHyRBwJSGlFKUaBVLX2gWR0BnU4o7V8TjdX2UKGgGaAloD0MI3NRA8zl5VMCUhpRSlGgVS2BoFkdAZ1TvJA+pwXV9lChoBmgJaA9DCHxCdt7GNF/AlIaUUpRoFUtaaBZHQGdXdb5dnkF1fZQoaAZoCWgPQwgxtDo5Qz9VwJSGlFKUaBVLT2gWR0BnWDWqcVgydX2UKGgGaAloD0MI3C3JAbueXMCUhpRSlGgVS0toFkdAZ1iIAwPAf3V9lChoBmgJaA9DCCR+xRou5FLAlIaUUpRoFUtkaBZHQGdZ96Tnq3V1fZQoaAZoCWgPQwg+BcB4hu5pwJSGlFKUaBVLTWgWR0BnWcqMFUyYdX2UKGgGaAloD0MIZvfkYaHSWcCUhpRSlGgVS0VoFkdAZ1ojtXxOL3V9lChoBmgJaA9DCKVneomxrEvAlIaUUpRoFUtMaBZHQGdaw7kn1Fp1fZQoaAZoCWgPQwgyWHGqdVt3wJSGlFKUaBVLYGgWR0BnWtBY3eendX2UKGgGaAloD0MI/5YA/FMjVcCUhpRSlGgVS2doFkdAZ1wsgdOqN3V9lChoBmgJaA9DCILGTKLennbAlIaUUpRoFUuIaBZHQGdfK7qY7aJ1fZQoaAZoCWgPQwho6+Bgb5pVwJSGlFKUaBVLQ2gWR0BnYjfgrH2idX2UKGgGaAloD0MICeHRxpGPYcCUhpRSlGgVS3poFkdAZ2MkIHC40HV9lChoBmgJaA9DCLwH6L6chV3AlIaUUpRoFUtBaBZHQGdoTEaVD8d1fZQoaAZoCWgPQwhoy7kUV5FiwJSGlFKUaBVLgGgWR0Bnalet0V8DdX2UKGgGaAloD0MIlQuVf+1GdMCUhpRSlGgVS2BoFkdAZ2pDUExIrnV9lChoBmgJaA9DCITwaOOIoF7AlIaUUpRoFUuIaBZHQGdqpw84gih1fZQoaAZoCWgPQwiNz2T/PBNowJSGlFKUaBVLUGgWR0Bna7Hjp9qldX2UKGgGaAloD0MIknh5Olc6XMCUhpRSlGgVS01oFkdAZ2vPY4ACGXV9lChoBmgJaA9DCHbCS3DqdGvAlIaUUpRoFUtJaBZHQGdsY7q6e5F1fZQoaAZoCWgPQwgnnx7bMhxMQJSGlFKUaBVN6ANoFkdAZ2zrj5sTFnV9lChoBmgJaA9DCGqJldGI+XLAlIaUUpRoFUtjaBZHQGdu2hRIjGF1fZQoaAZoCWgPQwhzol2FlK8rwJSGlFKUaBVLbGgWR0BncENKAavSdX2UKGgGaAloD0MI74y2Kom3ZsCUhpRSlGgVS2ZoFkdAZ3E+L3sXznV9lChoBmgJaA9DCFMHeT2YuWnAlIaUUpRoFUtYaBZHQGdyfvv0AcV1fZQoaAZoCWgPQwjaykv+J511wJSGlFKUaBVLi2gWR0Bndw1JlJ6IdX2UKGgGaAloD0MIPC0/cBVabMCUhpRSlGgVS5VoFkdAZ3cRYA80UHV9lChoBmgJaA9DCJcC0v5HknfAlIaUUpRoFUtmaBZHQGd3kTxoZht1fZQoaAZoCWgPQwjWVYFaDOpUwJSGlFKUaBVLTmgWR0BneBib2Dg7dX2UKGgGaAloD0MIRWYucDnmdcCUhpRSlGgVS2ZoFkdAZ3hL7oB7u3V9lChoBmgJaA9DCEvK3ed4vmHAlIaUUpRoFUtGaBZHQGd5QFkhA4Z1fZQoaAZoCWgPQwjZPuQtVzlbwJSGlFKUaBVLVGgWR0BnepJbt7a7dX2UKGgGaAloD0MIRUdy+Q/Ta8CUhpRSlGgVS0loFkdAZ3px/d69kHV9lChoBmgJaA9DCGAjSRCuuFTAlIaUUpRoFUtAaBZHQGd7mqo60Y11fZQoaAZoCWgPQwjlDMUdryZ5wJSGlFKUaBVLWWgWR0BnfP2qT8pDdX2UKGgGaAloD0MIpFAWvr59WMCUhpRSlGgVSz9oFkdAZ32IRAbADnV9lChoBmgJaA9DCGB4Jclz82nAlIaUUpRoFUtaaBZHQGd+wG4ZuQ91fZQoaAZoCWgPQwhLIZBLnNdtwJSGlFKUaBVLcWgWR0Bnf1/vv0AcdX2UKGgGaAloD0MICFbVy+9Od8CUhpRSlGgVS2BoFkdAZ4Hm9QGfPHV9lChoBmgJaA9DCFfqWRDKwV/AlIaUUpRoFUtFaBZHQGeC2lVLi/B1fZQoaAZoCWgPQwgkgJvFixUYwJSGlFKUaBVLh2gWR0Bng3nbItDldX2UKGgGaAloD0MI4X8r2bEaXcCUhpRSlGgVS0poFkdAZ4UUN8VpK3V9lChoBmgJaA9DCPmh0ogZ6XPAlIaUUpRoFUtXaBZHQGeHTJQtSQ51fZQoaAZoCWgPQwh5I/PIHw5VwJSGlFKUaBVLSmgWR0Bnh6eZof0VdX2UKGgGaAloD0MIGJgVinScUsCUhpRSlGgVS0JoFkdAZ4jEPUaybHV9lChoBmgJaA9DCISEKF/QVkzAlIaUUpRoFUtEaBZHQGeJu/k/8l51fZQoaAZoCWgPQwgKZeHrayUrwJSGlFKUaBVLp2gWR0BnimmelKsddX2UKGgGaAloD0MI5zV2ieo5XcCUhpRSlGgVS29oFkdAZ4rCa7VawHV9lChoBmgJaA9DCAQ5KGGmgWDAlIaUUpRoFUtwaBZHQGeLXI+4b0h1fZQoaAZoCWgPQwjpJ5zdWrBUwJSGlFKUaBVLRGgWR0Bni6paRp1zdX2UKGgGaAloD0MIhslUwaicMcCUhpRSlGgVS25oFkdAZ4yz/IbOvHV9lChoBmgJaA9DCOAu+3XnTHTAlIaUUpRoFUtmaBZHQGeMixmkFfR1fZQoaAZoCWgPQwjHSsyzkuBxwJSGlFKUaBVLd2gWR0BnkOs3hn8LdX2UKGgGaAloD0MIumWH+IdddMCUhpRSlGgVS2toFkdAZ5IFUyYXwnV9lChoBmgJaA9DCIicvp6vUFrAlIaUUpRoFUs6aBZHQGeUof0VafV1fZQoaAZoCWgPQwgmqOFbWIlewJSGlFKUaBVLWWgWR0BnlRkmQbMpdX2UKGgGaAloD0MI6MHdWXuReMCUhpRSlGgVS21oFkdAZ5agDifg8HV9lChoBmgJaA9DCIJ1HD9UulzAlIaUUpRoFUtQaBZHQGeXEiUxEfF1fZQoaAZoCWgPQwjZ0M3+QBB1wJSGlFKUaBVLTGgWR0Bnl1P3ztkXdX2UKGgGaAloD0MIjBAebdxBcsCUhpRSlGgVS1poFkdAZ5fQ9A5aNnV9lChoBmgJaA9DCAQ5KGGmwGnAlIaUUpRoFUt4aBZHQGeXtMoMKCx1fZQoaAZoCWgPQwhM3gAz359fwJSGlFKUaBVLd2gWR0BnmQUN8VpLdX2UKGgGaAloD0MIGjBI+rTdWsCUhpRSlGgVS1FoFkdAZ5n71Iy0r3V9lChoBmgJaA9DCMjvbfqzOlHAlIaUUpRoFUtQaBZHQGeasAWBSUF1fZQoaAZoCWgPQwg7qS9LO3plwJSGlFKUaBVLdGgWR0Bnm+c8TzundX2UKGgGaAloD0MIwHlx4qsaX8CUhpRSlGgVS2FoFkdAZ5vS0BwMpnV9lChoBmgJaA9DCIBHVKhuakbAlIaUUpRoFUtBaBZHQGef56t1ZDB1fZQoaAZoCWgPQwjXijbHOWVnwJSGlFKUaBVLdWgWR0Bnn9w3o9s8dX2UKGgGaAloD0MIcegtHt7hYMCUhpRSlGgVS1VoFkdAZ6C+PBBRh3V9lChoBmgJaA9DCAlx5eyd9m7AlIaUUpRoFUt/aBZHQGejJmEoOQR1fZQoaAZoCWgPQwiTNlX3SHZmwJSGlFKUaBVLSWgWR0Bno2dGy5ZsdX2UKGgGaAloD0MI0hkYeVkZccCUhpRSlGgVS0ZoFkdAZ6PdyDIzWXV9lChoBmgJaA9DCNtrQe+NnVfAlIaUUpRoFUtvaBZHQGekVrqMWGh1fZQoaAZoCWgPQwgf8wGBjo9xwJSGlFKUaBVLUGgWR0Bnpb0cwQDndX2UKGgGaAloD0MISBtHrMV2acCUhpRSlGgVS1ZoFkdAZ6YZv1lGw3V9lChoBmgJaA9DCCZXsfhNUVrAlIaUUpRoFUtnaBZHQGenKKYRdyF1fZQoaAZoCWgPQwjBGfz9IkF1wJSGlFKUaBVLTGgWR0Bnp0ZtNzsAdX2UKGgGaAloD0MINUWA07tjVcCUhpRSlGgVS1hoFkdAZ6hE9dNWVHV9lChoBmgJaA9DCJzgm6YPAnvAlIaUUpRoFUtvaBZHQGeqdv863iJ1fZQoaAZoCWgPQwhBnfLoxmtpwJSGlFKUaBVLXmgWR0Bnqv+0gKWtdX2UKGgGaAloD0MILgPOUrJcGcCUhpRSlGgVS0VoFkdAZ6vv+fh/AnV9lChoBmgJaA9DCKEUrdwLUV7AlIaUUpRoFUteaBZHQGesS1Vo6CF1fZQoaAZoCWgPQwgmNh/XRkJ5wJSGlFKUaBVLU2gWR0BntqxC6YmcdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 10, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9079e53bbea4029c095a54f1b4724c8b9c8f083b30dc9498cc69b1f4d2eb98e2
|
3 |
+
size 94243
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -1497.9428418680095, "std_reward": 644.258525258657, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-08T16:49:17.380700"}
|
spaceship_500000.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:45fd3e85101af8dbaf57594adcd69a2941462f9d1c3820c39f5f7882d22e2edd
|
3 |
+
size 143895
|
spaceship_500000/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
spaceship_500000/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f8d69cc7ef0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8d69cc7f80>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8d69c50050>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8d69c500e0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f8d69c50170>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f8d69c50200>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8d69c50290>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f8d69c50320>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8d69c503b0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8d69c50440>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8d69c504d0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f8d69ca70f0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 32768,
|
46 |
+
"_total_timesteps": 10,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1652028072.0409198,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABUq1r7zKaM+amT8vpkRib/QzDK+2q4ZPQAAAAAAAAAASmm0PrV47b0G2lY/FKOuv8LDUb96Ri8/AACAPwAAAADNRXU+ffmKP1FtLj6B+wy/CHIJPrbFaz0AAAAAAAAAAAB/uD1xi3s/yhXFPuQrOb+uq4C+FcrevQAAAAAAAAAAmtFTvOGxtj96oii/6s6zPq48hjzM1zY+AAAAAAAAAADGaBM+oPoaP7etmD4lKoS/a+yIvctA3rwAAAAAAAAAAHD3X76c86c+AfG8vg7HiL+HIY0+nps2vQAAAAAAAAAAk9ihvknpgz/o/HK/0A5Kv/a9Uj+HwYU+AAAAAAAAAABhgXa/qdsFPW1for/f07u/Ou9XP5/+sr0AAAAAAAAAAHPm7774rHA/a0SAvycKi7/oXr4/mgIEPwAAAAAAAAAADWDuPRRoGz+givA+c86Fv/79fr86BP++AAAAAAAAAAC++oe+FJDAP8jgZr9JDRq+UsdwPlzmFz4AAAAAAAAAAJpxIj65is4/xYzHPo/rvj1EVQI9+1aMvQAAAAAAAAAA/b/LviTipz97Foe/PRIPv6y+dT/CR58+AAAAAAAAAACA1RK9KEOTP7JB7L2eow2/8xKnPZ0svL0AAAAAAAAAAJpmI75Ygys/cEvqvu2rdL9F8SM/W9ZKPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -3275.8,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVHhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIiq92FOecXcCUhpRSlIwBbJRLU4wBdJRHQGc9yHmA9V51fZQoaAZoCWgPQwjqr1dYcFtewJSGlFKUaBVLdWgWR0BnP27e2uxKdX2UKGgGaAloD0MIaY6s/DKpXcCUhpRSlGgVS2NoFkdAZ0Crp7kXDXV9lChoBmgJaA9DCO9v0F59kGzAlIaUUpRoFUtOaBZHQGdCH6l+Eyt1fZQoaAZoCWgPQwinejL/6BhZwJSGlFKUaBVLbmgWR0BnRJCfHxSYdX2UKGgGaAloD0MIkj8YeO55W8CUhpRSlGgVS2poFkdAZ0ReWOZLI3V9lChoBmgJaA9DCMb4MHtZsmPAlIaUUpRoFUtSaBZHQGdGBdUsFt91fZQoaAZoCWgPQwgaGeQuwjhXwJSGlFKUaBVLQGgWR0BnRiVGCqZMdX2UKGgGaAloD0MILH5TWKkWXcCUhpRSlGgVS1xoFkdAZ0dHH3lCC3V9lChoBmgJaA9DCPWAeciUOFTAlIaUUpRoFUtHaBZHQGdIYkmhM8J1fZQoaAZoCWgPQwhw7xr0JVhmwJSGlFKUaBVLYGgWR0BnSOEh7mdRdX2UKGgGaAloD0MI2gOtwJAWXsCUhpRSlGgVS0FoFkdAZ0kkHD766HV9lChoBmgJaA9DCNlg4STNplzAlIaUUpRoFUs/aBZHQGdKS/sVtXR1fZQoaAZoCWgPQwjImpFBbhV1wJSGlFKUaBVLaWgWR0BnSx+SbH6udX2UKGgGaAloD0MIWAIpsWvNWMCUhpRSlGgVS0ZoFkdAZ0zn3+MqBnV9lChoBmgJaA9DCBrBxvVvq3LAlIaUUpRoFUtsaBZHQGdOR77bcoJ1fZQoaAZoCWgPQwhJn1bRHyRBwJSGlFKUaBVLX2gWR0BnU4o7V8TjdX2UKGgGaAloD0MI3NRA8zl5VMCUhpRSlGgVS2BoFkdAZ1TvJA+pwXV9lChoBmgJaA9DCHxCdt7GNF/AlIaUUpRoFUtaaBZHQGdXdb5dnkF1fZQoaAZoCWgPQwgxtDo5Qz9VwJSGlFKUaBVLT2gWR0BnWDWqcVgydX2UKGgGaAloD0MI3C3JAbueXMCUhpRSlGgVS0toFkdAZ1iIAwPAf3V9lChoBmgJaA9DCCR+xRou5FLAlIaUUpRoFUtkaBZHQGdZ96Tnq3V1fZQoaAZoCWgPQwg+BcB4hu5pwJSGlFKUaBVLTWgWR0BnWcqMFUyYdX2UKGgGaAloD0MIZvfkYaHSWcCUhpRSlGgVS0VoFkdAZ1ojtXxOL3V9lChoBmgJaA9DCKVneomxrEvAlIaUUpRoFUtMaBZHQGdaw7kn1Fp1fZQoaAZoCWgPQwgyWHGqdVt3wJSGlFKUaBVLYGgWR0BnWtBY3eendX2UKGgGaAloD0MI/5YA/FMjVcCUhpRSlGgVS2doFkdAZ1wsgdOqN3V9lChoBmgJaA9DCILGTKLennbAlIaUUpRoFUuIaBZHQGdfK7qY7aJ1fZQoaAZoCWgPQwho6+Bgb5pVwJSGlFKUaBVLQ2gWR0BnYjfgrH2idX2UKGgGaAloD0MICeHRxpGPYcCUhpRSlGgVS3poFkdAZ2MkIHC40HV9lChoBmgJaA9DCLwH6L6chV3AlIaUUpRoFUtBaBZHQGdoTEaVD8d1fZQoaAZoCWgPQwhoy7kUV5FiwJSGlFKUaBVLgGgWR0Bnalet0V8DdX2UKGgGaAloD0MIlQuVf+1GdMCUhpRSlGgVS2BoFkdAZ2pDUExIrnV9lChoBmgJaA9DCITwaOOIoF7AlIaUUpRoFUuIaBZHQGdqpw84gih1fZQoaAZoCWgPQwiNz2T/PBNowJSGlFKUaBVLUGgWR0Bna7Hjp9qldX2UKGgGaAloD0MIknh5Olc6XMCUhpRSlGgVS01oFkdAZ2vPY4ACGXV9lChoBmgJaA9DCHbCS3DqdGvAlIaUUpRoFUtJaBZHQGdsY7q6e5F1fZQoaAZoCWgPQwgnnx7bMhxMQJSGlFKUaBVN6ANoFkdAZ2zrj5sTFnV9lChoBmgJaA9DCGqJldGI+XLAlIaUUpRoFUtjaBZHQGdu2hRIjGF1fZQoaAZoCWgPQwhzol2FlK8rwJSGlFKUaBVLbGgWR0BncENKAavSdX2UKGgGaAloD0MI74y2Kom3ZsCUhpRSlGgVS2ZoFkdAZ3E+L3sXznV9lChoBmgJaA9DCFMHeT2YuWnAlIaUUpRoFUtYaBZHQGdyfvv0AcV1fZQoaAZoCWgPQwjaykv+J511wJSGlFKUaBVLi2gWR0Bndw1JlJ6IdX2UKGgGaAloD0MIPC0/cBVabMCUhpRSlGgVS5VoFkdAZ3cRYA80UHV9lChoBmgJaA9DCJcC0v5HknfAlIaUUpRoFUtmaBZHQGd3kTxoZht1fZQoaAZoCWgPQwjWVYFaDOpUwJSGlFKUaBVLTmgWR0BneBib2Dg7dX2UKGgGaAloD0MIRWYucDnmdcCUhpRSlGgVS2ZoFkdAZ3hL7oB7u3V9lChoBmgJaA9DCEvK3ed4vmHAlIaUUpRoFUtGaBZHQGd5QFkhA4Z1fZQoaAZoCWgPQwjZPuQtVzlbwJSGlFKUaBVLVGgWR0BnepJbt7a7dX2UKGgGaAloD0MIRUdy+Q/Ta8CUhpRSlGgVS0loFkdAZ3px/d69kHV9lChoBmgJaA9DCGAjSRCuuFTAlIaUUpRoFUtAaBZHQGd7mqo60Y11fZQoaAZoCWgPQwjlDMUdryZ5wJSGlFKUaBVLWWgWR0BnfP2qT8pDdX2UKGgGaAloD0MIpFAWvr59WMCUhpRSlGgVSz9oFkdAZ32IRAbADnV9lChoBmgJaA9DCGB4Jclz82nAlIaUUpRoFUtaaBZHQGd+wG4ZuQ91fZQoaAZoCWgPQwhLIZBLnNdtwJSGlFKUaBVLcWgWR0Bnf1/vv0AcdX2UKGgGaAloD0MICFbVy+9Od8CUhpRSlGgVS2BoFkdAZ4Hm9QGfPHV9lChoBmgJaA9DCFfqWRDKwV/AlIaUUpRoFUtFaBZHQGeC2lVLi/B1fZQoaAZoCWgPQwgkgJvFixUYwJSGlFKUaBVLh2gWR0Bng3nbItDldX2UKGgGaAloD0MI4X8r2bEaXcCUhpRSlGgVS0poFkdAZ4UUN8VpK3V9lChoBmgJaA9DCPmh0ogZ6XPAlIaUUpRoFUtXaBZHQGeHTJQtSQ51fZQoaAZoCWgPQwh5I/PIHw5VwJSGlFKUaBVLSmgWR0Bnh6eZof0VdX2UKGgGaAloD0MIGJgVinScUsCUhpRSlGgVS0JoFkdAZ4jEPUaybHV9lChoBmgJaA9DCISEKF/QVkzAlIaUUpRoFUtEaBZHQGeJu/k/8l51fZQoaAZoCWgPQwgKZeHrayUrwJSGlFKUaBVLp2gWR0BnimmelKsddX2UKGgGaAloD0MI5zV2ieo5XcCUhpRSlGgVS29oFkdAZ4rCa7VawHV9lChoBmgJaA9DCAQ5KGGmgWDAlIaUUpRoFUtwaBZHQGeLXI+4b0h1fZQoaAZoCWgPQwjpJ5zdWrBUwJSGlFKUaBVLRGgWR0Bni6paRp1zdX2UKGgGaAloD0MIhslUwaicMcCUhpRSlGgVS25oFkdAZ4yz/IbOvHV9lChoBmgJaA9DCOAu+3XnTHTAlIaUUpRoFUtmaBZHQGeMixmkFfR1fZQoaAZoCWgPQwjHSsyzkuBxwJSGlFKUaBVLd2gWR0BnkOs3hn8LdX2UKGgGaAloD0MIumWH+IdddMCUhpRSlGgVS2toFkdAZ5IFUyYXwnV9lChoBmgJaA9DCIicvp6vUFrAlIaUUpRoFUs6aBZHQGeUof0VafV1fZQoaAZoCWgPQwgmqOFbWIlewJSGlFKUaBVLWWgWR0BnlRkmQbMpdX2UKGgGaAloD0MI6MHdWXuReMCUhpRSlGgVS21oFkdAZ5agDifg8HV9lChoBmgJaA9DCIJ1HD9UulzAlIaUUpRoFUtQaBZHQGeXEiUxEfF1fZQoaAZoCWgPQwjZ0M3+QBB1wJSGlFKUaBVLTGgWR0Bnl1P3ztkXdX2UKGgGaAloD0MIjBAebdxBcsCUhpRSlGgVS1poFkdAZ5fQ9A5aNnV9lChoBmgJaA9DCAQ5KGGmwGnAlIaUUpRoFUt4aBZHQGeXtMoMKCx1fZQoaAZoCWgPQwhM3gAz359fwJSGlFKUaBVLd2gWR0BnmQUN8VpLdX2UKGgGaAloD0MIGjBI+rTdWsCUhpRSlGgVS1FoFkdAZ5n71Iy0r3V9lChoBmgJaA9DCMjvbfqzOlHAlIaUUpRoFUtQaBZHQGeasAWBSUF1fZQoaAZoCWgPQwg7qS9LO3plwJSGlFKUaBVLdGgWR0Bnm+c8TzundX2UKGgGaAloD0MIwHlx4qsaX8CUhpRSlGgVS2FoFkdAZ5vS0BwMpnV9lChoBmgJaA9DCIBHVKhuakbAlIaUUpRoFUtBaBZHQGef56t1ZDB1fZQoaAZoCWgPQwjXijbHOWVnwJSGlFKUaBVLdWgWR0Bnn9w3o9s8dX2UKGgGaAloD0MIcegtHt7hYMCUhpRSlGgVS1VoFkdAZ6C+PBBRh3V9lChoBmgJaA9DCAlx5eyd9m7AlIaUUpRoFUt/aBZHQGejJmEoOQR1fZQoaAZoCWgPQwiTNlX3SHZmwJSGlFKUaBVLSWgWR0Bno2dGy5ZsdX2UKGgGaAloD0MI0hkYeVkZccCUhpRSlGgVS0ZoFkdAZ6PdyDIzWXV9lChoBmgJaA9DCNtrQe+NnVfAlIaUUpRoFUtvaBZHQGekVrqMWGh1fZQoaAZoCWgPQwgf8wGBjo9xwJSGlFKUaBVLUGgWR0Bnpb0cwQDndX2UKGgGaAloD0MISBtHrMV2acCUhpRSlGgVS1ZoFkdAZ6YZv1lGw3V9lChoBmgJaA9DCCZXsfhNUVrAlIaUUpRoFUtnaBZHQGenKKYRdyF1fZQoaAZoCWgPQwjBGfz9IkF1wJSGlFKUaBVLTGgWR0Bnp0ZtNzsAdX2UKGgGaAloD0MINUWA07tjVcCUhpRSlGgVS1hoFkdAZ6hE9dNWVHV9lChoBmgJaA9DCJzgm6YPAnvAlIaUUpRoFUtvaBZHQGeqdv863iJ1fZQoaAZoCWgPQwhBnfLoxmtpwJSGlFKUaBVLXmgWR0Bnqv+0gKWtdX2UKGgGaAloD0MILgPOUrJcGcCUhpRSlGgVS0VoFkdAZ6vv+fh/AnV9lChoBmgJaA9DCKEUrdwLUV7AlIaUUpRoFUteaBZHQGesS1Vo6CF1fZQoaAZoCWgPQwgmNh/XRkJ5wJSGlFKUaBVLU2gWR0BntqxC6YmcdWUu"
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 10,
|
79 |
+
"n_steps": 2048,
|
80 |
+
"gamma": 0.99,
|
81 |
+
"gae_lambda": 0.95,
|
82 |
+
"ent_coef": 0.0,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 10,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
spaceship_500000/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:45a8b3a7a23ab3608e304e701c83e2efb7ab5490390f238d28589bb2304d4402
|
3 |
+
size 84829
|
spaceship_500000/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fad2c6f57eee4b48d7046d86ae8488dd92ab46ead8f85bcbe3eab55b97baa6c1
|
3 |
+
size 43201
|
spaceship_500000/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
spaceship_500000/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|