syrios commited on
Commit
a5505a7
1 Parent(s): d9679ea

Initial test with 10 iterations

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: -1497.94 +/- 644.26
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **PPO** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
25
+
26
+ ## Usage (with Stable-baselines3)
27
+ TODO: Add your code
28
+
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8d69cc7ef0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8d69cc7f80>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8d69c50050>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8d69c500e0>", "_build": "<function ActorCriticPolicy._build at 0x7f8d69c50170>", "forward": "<function ActorCriticPolicy.forward at 0x7f8d69c50200>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8d69c50290>", "_predict": "<function ActorCriticPolicy._predict at 0x7f8d69c50320>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8d69c503b0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8d69c50440>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8d69c504d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f8d69ca70f0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 32768, "_total_timesteps": 10, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652028072.0409198, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABUq1r7zKaM+amT8vpkRib/QzDK+2q4ZPQAAAAAAAAAASmm0PrV47b0G2lY/FKOuv8LDUb96Ri8/AACAPwAAAADNRXU+ffmKP1FtLj6B+wy/CHIJPrbFaz0AAAAAAAAAAAB/uD1xi3s/yhXFPuQrOb+uq4C+FcrevQAAAAAAAAAAmtFTvOGxtj96oii/6s6zPq48hjzM1zY+AAAAAAAAAADGaBM+oPoaP7etmD4lKoS/a+yIvctA3rwAAAAAAAAAAHD3X76c86c+AfG8vg7HiL+HIY0+nps2vQAAAAAAAAAAk9ihvknpgz/o/HK/0A5Kv/a9Uj+HwYU+AAAAAAAAAABhgXa/qdsFPW1for/f07u/Ou9XP5/+sr0AAAAAAAAAAHPm7774rHA/a0SAvycKi7/oXr4/mgIEPwAAAAAAAAAADWDuPRRoGz+givA+c86Fv/79fr86BP++AAAAAAAAAAC++oe+FJDAP8jgZr9JDRq+UsdwPlzmFz4AAAAAAAAAAJpxIj65is4/xYzHPo/rvj1EVQI9+1aMvQAAAAAAAAAA/b/LviTipz97Foe/PRIPv6y+dT/CR58+AAAAAAAAAACA1RK9KEOTP7JB7L2eow2/8xKnPZ0svL0AAAAAAAAAAJpmI75Ygys/cEvqvu2rdL9F8SM/W9ZKPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -3275.8, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIiq92FOecXcCUhpRSlIwBbJRLU4wBdJRHQGc9yHmA9V51fZQoaAZoCWgPQwjqr1dYcFtewJSGlFKUaBVLdWgWR0BnP27e2uxKdX2UKGgGaAloD0MIaY6s/DKpXcCUhpRSlGgVS2NoFkdAZ0Crp7kXDXV9lChoBmgJaA9DCO9v0F59kGzAlIaUUpRoFUtOaBZHQGdCH6l+Eyt1fZQoaAZoCWgPQwinejL/6BhZwJSGlFKUaBVLbmgWR0BnRJCfHxSYdX2UKGgGaAloD0MIkj8YeO55W8CUhpRSlGgVS2poFkdAZ0ReWOZLI3V9lChoBmgJaA9DCMb4MHtZsmPAlIaUUpRoFUtSaBZHQGdGBdUsFt91fZQoaAZoCWgPQwgaGeQuwjhXwJSGlFKUaBVLQGgWR0BnRiVGCqZMdX2UKGgGaAloD0MILH5TWKkWXcCUhpRSlGgVS1xoFkdAZ0dHH3lCC3V9lChoBmgJaA9DCPWAeciUOFTAlIaUUpRoFUtHaBZHQGdIYkmhM8J1fZQoaAZoCWgPQwhw7xr0JVhmwJSGlFKUaBVLYGgWR0BnSOEh7mdRdX2UKGgGaAloD0MI2gOtwJAWXsCUhpRSlGgVS0FoFkdAZ0kkHD766HV9lChoBmgJaA9DCNlg4STNplzAlIaUUpRoFUs/aBZHQGdKS/sVtXR1fZQoaAZoCWgPQwjImpFBbhV1wJSGlFKUaBVLaWgWR0BnSx+SbH6udX2UKGgGaAloD0MIWAIpsWvNWMCUhpRSlGgVS0ZoFkdAZ0zn3+MqBnV9lChoBmgJaA9DCBrBxvVvq3LAlIaUUpRoFUtsaBZHQGdOR77bcoJ1fZQoaAZoCWgPQwhJn1bRHyRBwJSGlFKUaBVLX2gWR0BnU4o7V8TjdX2UKGgGaAloD0MI3NRA8zl5VMCUhpRSlGgVS2BoFkdAZ1TvJA+pwXV9lChoBmgJaA9DCHxCdt7GNF/AlIaUUpRoFUtaaBZHQGdXdb5dnkF1fZQoaAZoCWgPQwgxtDo5Qz9VwJSGlFKUaBVLT2gWR0BnWDWqcVgydX2UKGgGaAloD0MI3C3JAbueXMCUhpRSlGgVS0toFkdAZ1iIAwPAf3V9lChoBmgJaA9DCCR+xRou5FLAlIaUUpRoFUtkaBZHQGdZ96Tnq3V1fZQoaAZoCWgPQwg+BcB4hu5pwJSGlFKUaBVLTWgWR0BnWcqMFUyYdX2UKGgGaAloD0MIZvfkYaHSWcCUhpRSlGgVS0VoFkdAZ1ojtXxOL3V9lChoBmgJaA9DCKVneomxrEvAlIaUUpRoFUtMaBZHQGdaw7kn1Fp1fZQoaAZoCWgPQwgyWHGqdVt3wJSGlFKUaBVLYGgWR0BnWtBY3eendX2UKGgGaAloD0MI/5YA/FMjVcCUhpRSlGgVS2doFkdAZ1wsgdOqN3V9lChoBmgJaA9DCILGTKLennbAlIaUUpRoFUuIaBZHQGdfK7qY7aJ1fZQoaAZoCWgPQwho6+Bgb5pVwJSGlFKUaBVLQ2gWR0BnYjfgrH2idX2UKGgGaAloD0MICeHRxpGPYcCUhpRSlGgVS3poFkdAZ2MkIHC40HV9lChoBmgJaA9DCLwH6L6chV3AlIaUUpRoFUtBaBZHQGdoTEaVD8d1fZQoaAZoCWgPQwhoy7kUV5FiwJSGlFKUaBVLgGgWR0Bnalet0V8DdX2UKGgGaAloD0MIlQuVf+1GdMCUhpRSlGgVS2BoFkdAZ2pDUExIrnV9lChoBmgJaA9DCITwaOOIoF7AlIaUUpRoFUuIaBZHQGdqpw84gih1fZQoaAZoCWgPQwiNz2T/PBNowJSGlFKUaBVLUGgWR0Bna7Hjp9qldX2UKGgGaAloD0MIknh5Olc6XMCUhpRSlGgVS01oFkdAZ2vPY4ACGXV9lChoBmgJaA9DCHbCS3DqdGvAlIaUUpRoFUtJaBZHQGdsY7q6e5F1fZQoaAZoCWgPQwgnnx7bMhxMQJSGlFKUaBVN6ANoFkdAZ2zrj5sTFnV9lChoBmgJaA9DCGqJldGI+XLAlIaUUpRoFUtjaBZHQGdu2hRIjGF1fZQoaAZoCWgPQwhzol2FlK8rwJSGlFKUaBVLbGgWR0BncENKAavSdX2UKGgGaAloD0MI74y2Kom3ZsCUhpRSlGgVS2ZoFkdAZ3E+L3sXznV9lChoBmgJaA9DCFMHeT2YuWnAlIaUUpRoFUtYaBZHQGdyfvv0AcV1fZQoaAZoCWgPQwjaykv+J511wJSGlFKUaBVLi2gWR0Bndw1JlJ6IdX2UKGgGaAloD0MIPC0/cBVabMCUhpRSlGgVS5VoFkdAZ3cRYA80UHV9lChoBmgJaA9DCJcC0v5HknfAlIaUUpRoFUtmaBZHQGd3kTxoZht1fZQoaAZoCWgPQwjWVYFaDOpUwJSGlFKUaBVLTmgWR0BneBib2Dg7dX2UKGgGaAloD0MIRWYucDnmdcCUhpRSlGgVS2ZoFkdAZ3hL7oB7u3V9lChoBmgJaA9DCEvK3ed4vmHAlIaUUpRoFUtGaBZHQGd5QFkhA4Z1fZQoaAZoCWgPQwjZPuQtVzlbwJSGlFKUaBVLVGgWR0BnepJbt7a7dX2UKGgGaAloD0MIRUdy+Q/Ta8CUhpRSlGgVS0loFkdAZ3px/d69kHV9lChoBmgJaA9DCGAjSRCuuFTAlIaUUpRoFUtAaBZHQGd7mqo60Y11fZQoaAZoCWgPQwjlDMUdryZ5wJSGlFKUaBVLWWgWR0BnfP2qT8pDdX2UKGgGaAloD0MIpFAWvr59WMCUhpRSlGgVSz9oFkdAZ32IRAbADnV9lChoBmgJaA9DCGB4Jclz82nAlIaUUpRoFUtaaBZHQGd+wG4ZuQ91fZQoaAZoCWgPQwhLIZBLnNdtwJSGlFKUaBVLcWgWR0Bnf1/vv0AcdX2UKGgGaAloD0MICFbVy+9Od8CUhpRSlGgVS2BoFkdAZ4Hm9QGfPHV9lChoBmgJaA9DCFfqWRDKwV/AlIaUUpRoFUtFaBZHQGeC2lVLi/B1fZQoaAZoCWgPQwgkgJvFixUYwJSGlFKUaBVLh2gWR0Bng3nbItDldX2UKGgGaAloD0MI4X8r2bEaXcCUhpRSlGgVS0poFkdAZ4UUN8VpK3V9lChoBmgJaA9DCPmh0ogZ6XPAlIaUUpRoFUtXaBZHQGeHTJQtSQ51fZQoaAZoCWgPQwh5I/PIHw5VwJSGlFKUaBVLSmgWR0Bnh6eZof0VdX2UKGgGaAloD0MIGJgVinScUsCUhpRSlGgVS0JoFkdAZ4jEPUaybHV9lChoBmgJaA9DCISEKF/QVkzAlIaUUpRoFUtEaBZHQGeJu/k/8l51fZQoaAZoCWgPQwgKZeHrayUrwJSGlFKUaBVLp2gWR0BnimmelKsddX2UKGgGaAloD0MI5zV2ieo5XcCUhpRSlGgVS29oFkdAZ4rCa7VawHV9lChoBmgJaA9DCAQ5KGGmgWDAlIaUUpRoFUtwaBZHQGeLXI+4b0h1fZQoaAZoCWgPQwjpJ5zdWrBUwJSGlFKUaBVLRGgWR0Bni6paRp1zdX2UKGgGaAloD0MIhslUwaicMcCUhpRSlGgVS25oFkdAZ4yz/IbOvHV9lChoBmgJaA9DCOAu+3XnTHTAlIaUUpRoFUtmaBZHQGeMixmkFfR1fZQoaAZoCWgPQwjHSsyzkuBxwJSGlFKUaBVLd2gWR0BnkOs3hn8LdX2UKGgGaAloD0MIumWH+IdddMCUhpRSlGgVS2toFkdAZ5IFUyYXwnV9lChoBmgJaA9DCIicvp6vUFrAlIaUUpRoFUs6aBZHQGeUof0VafV1fZQoaAZoCWgPQwgmqOFbWIlewJSGlFKUaBVLWWgWR0BnlRkmQbMpdX2UKGgGaAloD0MI6MHdWXuReMCUhpRSlGgVS21oFkdAZ5agDifg8HV9lChoBmgJaA9DCIJ1HD9UulzAlIaUUpRoFUtQaBZHQGeXEiUxEfF1fZQoaAZoCWgPQwjZ0M3+QBB1wJSGlFKUaBVLTGgWR0Bnl1P3ztkXdX2UKGgGaAloD0MIjBAebdxBcsCUhpRSlGgVS1poFkdAZ5fQ9A5aNnV9lChoBmgJaA9DCAQ5KGGmwGnAlIaUUpRoFUt4aBZHQGeXtMoMKCx1fZQoaAZoCWgPQwhM3gAz359fwJSGlFKUaBVLd2gWR0BnmQUN8VpLdX2UKGgGaAloD0MIGjBI+rTdWsCUhpRSlGgVS1FoFkdAZ5n71Iy0r3V9lChoBmgJaA9DCMjvbfqzOlHAlIaUUpRoFUtQaBZHQGeasAWBSUF1fZQoaAZoCWgPQwg7qS9LO3plwJSGlFKUaBVLdGgWR0Bnm+c8TzundX2UKGgGaAloD0MIwHlx4qsaX8CUhpRSlGgVS2FoFkdAZ5vS0BwMpnV9lChoBmgJaA9DCIBHVKhuakbAlIaUUpRoFUtBaBZHQGef56t1ZDB1fZQoaAZoCWgPQwjXijbHOWVnwJSGlFKUaBVLdWgWR0Bnn9w3o9s8dX2UKGgGaAloD0MIcegtHt7hYMCUhpRSlGgVS1VoFkdAZ6C+PBBRh3V9lChoBmgJaA9DCAlx5eyd9m7AlIaUUpRoFUt/aBZHQGejJmEoOQR1fZQoaAZoCWgPQwiTNlX3SHZmwJSGlFKUaBVLSWgWR0Bno2dGy5ZsdX2UKGgGaAloD0MI0hkYeVkZccCUhpRSlGgVS0ZoFkdAZ6PdyDIzWXV9lChoBmgJaA9DCNtrQe+NnVfAlIaUUpRoFUtvaBZHQGekVrqMWGh1fZQoaAZoCWgPQwgf8wGBjo9xwJSGlFKUaBVLUGgWR0Bnpb0cwQDndX2UKGgGaAloD0MISBtHrMV2acCUhpRSlGgVS1ZoFkdAZ6YZv1lGw3V9lChoBmgJaA9DCCZXsfhNUVrAlIaUUpRoFUtnaBZHQGenKKYRdyF1fZQoaAZoCWgPQwjBGfz9IkF1wJSGlFKUaBVLTGgWR0Bnp0ZtNzsAdX2UKGgGaAloD0MINUWA07tjVcCUhpRSlGgVS1hoFkdAZ6hE9dNWVHV9lChoBmgJaA9DCJzgm6YPAnvAlIaUUpRoFUtvaBZHQGeqdv863iJ1fZQoaAZoCWgPQwhBnfLoxmtpwJSGlFKUaBVLXmgWR0Bnqv+0gKWtdX2UKGgGaAloD0MILgPOUrJcGcCUhpRSlGgVS0VoFkdAZ6vv+fh/AnV9lChoBmgJaA9DCKEUrdwLUV7AlIaUUpRoFUteaBZHQGesS1Vo6CF1fZQoaAZoCWgPQwgmNh/XRkJ5wJSGlFKUaBVLU2gWR0BntqxC6YmcdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 10, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9079e53bbea4029c095a54f1b4724c8b9c8f083b30dc9498cc69b1f4d2eb98e2
3
+ size 94243
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -1497.9428418680095, "std_reward": 644.258525258657, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-08T16:49:17.380700"}
spaceship_500000.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:45fd3e85101af8dbaf57594adcd69a2941462f9d1c3820c39f5f7882d22e2edd
3
+ size 143895
spaceship_500000/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
spaceship_500000/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8d69cc7ef0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8d69cc7f80>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8d69c50050>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8d69c500e0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f8d69c50170>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f8d69c50200>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8d69c50290>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f8d69c50320>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8d69c503b0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8d69c50440>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8d69c504d0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f8d69ca70f0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 32768,
46
+ "_total_timesteps": 10,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1652028072.0409198,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABUq1r7zKaM+amT8vpkRib/QzDK+2q4ZPQAAAAAAAAAASmm0PrV47b0G2lY/FKOuv8LDUb96Ri8/AACAPwAAAADNRXU+ffmKP1FtLj6B+wy/CHIJPrbFaz0AAAAAAAAAAAB/uD1xi3s/yhXFPuQrOb+uq4C+FcrevQAAAAAAAAAAmtFTvOGxtj96oii/6s6zPq48hjzM1zY+AAAAAAAAAADGaBM+oPoaP7etmD4lKoS/a+yIvctA3rwAAAAAAAAAAHD3X76c86c+AfG8vg7HiL+HIY0+nps2vQAAAAAAAAAAk9ihvknpgz/o/HK/0A5Kv/a9Uj+HwYU+AAAAAAAAAABhgXa/qdsFPW1for/f07u/Ou9XP5/+sr0AAAAAAAAAAHPm7774rHA/a0SAvycKi7/oXr4/mgIEPwAAAAAAAAAADWDuPRRoGz+givA+c86Fv/79fr86BP++AAAAAAAAAAC++oe+FJDAP8jgZr9JDRq+UsdwPlzmFz4AAAAAAAAAAJpxIj65is4/xYzHPo/rvj1EVQI9+1aMvQAAAAAAAAAA/b/LviTipz97Foe/PRIPv6y+dT/CR58+AAAAAAAAAACA1RK9KEOTP7JB7L2eow2/8xKnPZ0svL0AAAAAAAAAAJpmI75Ygys/cEvqvu2rdL9F8SM/W9ZKPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -3275.8,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVHhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIiq92FOecXcCUhpRSlIwBbJRLU4wBdJRHQGc9yHmA9V51fZQoaAZoCWgPQwjqr1dYcFtewJSGlFKUaBVLdWgWR0BnP27e2uxKdX2UKGgGaAloD0MIaY6s/DKpXcCUhpRSlGgVS2NoFkdAZ0Crp7kXDXV9lChoBmgJaA9DCO9v0F59kGzAlIaUUpRoFUtOaBZHQGdCH6l+Eyt1fZQoaAZoCWgPQwinejL/6BhZwJSGlFKUaBVLbmgWR0BnRJCfHxSYdX2UKGgGaAloD0MIkj8YeO55W8CUhpRSlGgVS2poFkdAZ0ReWOZLI3V9lChoBmgJaA9DCMb4MHtZsmPAlIaUUpRoFUtSaBZHQGdGBdUsFt91fZQoaAZoCWgPQwgaGeQuwjhXwJSGlFKUaBVLQGgWR0BnRiVGCqZMdX2UKGgGaAloD0MILH5TWKkWXcCUhpRSlGgVS1xoFkdAZ0dHH3lCC3V9lChoBmgJaA9DCPWAeciUOFTAlIaUUpRoFUtHaBZHQGdIYkmhM8J1fZQoaAZoCWgPQwhw7xr0JVhmwJSGlFKUaBVLYGgWR0BnSOEh7mdRdX2UKGgGaAloD0MI2gOtwJAWXsCUhpRSlGgVS0FoFkdAZ0kkHD766HV9lChoBmgJaA9DCNlg4STNplzAlIaUUpRoFUs/aBZHQGdKS/sVtXR1fZQoaAZoCWgPQwjImpFBbhV1wJSGlFKUaBVLaWgWR0BnSx+SbH6udX2UKGgGaAloD0MIWAIpsWvNWMCUhpRSlGgVS0ZoFkdAZ0zn3+MqBnV9lChoBmgJaA9DCBrBxvVvq3LAlIaUUpRoFUtsaBZHQGdOR77bcoJ1fZQoaAZoCWgPQwhJn1bRHyRBwJSGlFKUaBVLX2gWR0BnU4o7V8TjdX2UKGgGaAloD0MI3NRA8zl5VMCUhpRSlGgVS2BoFkdAZ1TvJA+pwXV9lChoBmgJaA9DCHxCdt7GNF/AlIaUUpRoFUtaaBZHQGdXdb5dnkF1fZQoaAZoCWgPQwgxtDo5Qz9VwJSGlFKUaBVLT2gWR0BnWDWqcVgydX2UKGgGaAloD0MI3C3JAbueXMCUhpRSlGgVS0toFkdAZ1iIAwPAf3V9lChoBmgJaA9DCCR+xRou5FLAlIaUUpRoFUtkaBZHQGdZ96Tnq3V1fZQoaAZoCWgPQwg+BcB4hu5pwJSGlFKUaBVLTWgWR0BnWcqMFUyYdX2UKGgGaAloD0MIZvfkYaHSWcCUhpRSlGgVS0VoFkdAZ1ojtXxOL3V9lChoBmgJaA9DCKVneomxrEvAlIaUUpRoFUtMaBZHQGdaw7kn1Fp1fZQoaAZoCWgPQwgyWHGqdVt3wJSGlFKUaBVLYGgWR0BnWtBY3eendX2UKGgGaAloD0MI/5YA/FMjVcCUhpRSlGgVS2doFkdAZ1wsgdOqN3V9lChoBmgJaA9DCILGTKLennbAlIaUUpRoFUuIaBZHQGdfK7qY7aJ1fZQoaAZoCWgPQwho6+Bgb5pVwJSGlFKUaBVLQ2gWR0BnYjfgrH2idX2UKGgGaAloD0MICeHRxpGPYcCUhpRSlGgVS3poFkdAZ2MkIHC40HV9lChoBmgJaA9DCLwH6L6chV3AlIaUUpRoFUtBaBZHQGdoTEaVD8d1fZQoaAZoCWgPQwhoy7kUV5FiwJSGlFKUaBVLgGgWR0Bnalet0V8DdX2UKGgGaAloD0MIlQuVf+1GdMCUhpRSlGgVS2BoFkdAZ2pDUExIrnV9lChoBmgJaA9DCITwaOOIoF7AlIaUUpRoFUuIaBZHQGdqpw84gih1fZQoaAZoCWgPQwiNz2T/PBNowJSGlFKUaBVLUGgWR0Bna7Hjp9qldX2UKGgGaAloD0MIknh5Olc6XMCUhpRSlGgVS01oFkdAZ2vPY4ACGXV9lChoBmgJaA9DCHbCS3DqdGvAlIaUUpRoFUtJaBZHQGdsY7q6e5F1fZQoaAZoCWgPQwgnnx7bMhxMQJSGlFKUaBVN6ANoFkdAZ2zrj5sTFnV9lChoBmgJaA9DCGqJldGI+XLAlIaUUpRoFUtjaBZHQGdu2hRIjGF1fZQoaAZoCWgPQwhzol2FlK8rwJSGlFKUaBVLbGgWR0BncENKAavSdX2UKGgGaAloD0MI74y2Kom3ZsCUhpRSlGgVS2ZoFkdAZ3E+L3sXznV9lChoBmgJaA9DCFMHeT2YuWnAlIaUUpRoFUtYaBZHQGdyfvv0AcV1fZQoaAZoCWgPQwjaykv+J511wJSGlFKUaBVLi2gWR0Bndw1JlJ6IdX2UKGgGaAloD0MIPC0/cBVabMCUhpRSlGgVS5VoFkdAZ3cRYA80UHV9lChoBmgJaA9DCJcC0v5HknfAlIaUUpRoFUtmaBZHQGd3kTxoZht1fZQoaAZoCWgPQwjWVYFaDOpUwJSGlFKUaBVLTmgWR0BneBib2Dg7dX2UKGgGaAloD0MIRWYucDnmdcCUhpRSlGgVS2ZoFkdAZ3hL7oB7u3V9lChoBmgJaA9DCEvK3ed4vmHAlIaUUpRoFUtGaBZHQGd5QFkhA4Z1fZQoaAZoCWgPQwjZPuQtVzlbwJSGlFKUaBVLVGgWR0BnepJbt7a7dX2UKGgGaAloD0MIRUdy+Q/Ta8CUhpRSlGgVS0loFkdAZ3px/d69kHV9lChoBmgJaA9DCGAjSRCuuFTAlIaUUpRoFUtAaBZHQGd7mqo60Y11fZQoaAZoCWgPQwjlDMUdryZ5wJSGlFKUaBVLWWgWR0BnfP2qT8pDdX2UKGgGaAloD0MIpFAWvr59WMCUhpRSlGgVSz9oFkdAZ32IRAbADnV9lChoBmgJaA9DCGB4Jclz82nAlIaUUpRoFUtaaBZHQGd+wG4ZuQ91fZQoaAZoCWgPQwhLIZBLnNdtwJSGlFKUaBVLcWgWR0Bnf1/vv0AcdX2UKGgGaAloD0MICFbVy+9Od8CUhpRSlGgVS2BoFkdAZ4Hm9QGfPHV9lChoBmgJaA9DCFfqWRDKwV/AlIaUUpRoFUtFaBZHQGeC2lVLi/B1fZQoaAZoCWgPQwgkgJvFixUYwJSGlFKUaBVLh2gWR0Bng3nbItDldX2UKGgGaAloD0MI4X8r2bEaXcCUhpRSlGgVS0poFkdAZ4UUN8VpK3V9lChoBmgJaA9DCPmh0ogZ6XPAlIaUUpRoFUtXaBZHQGeHTJQtSQ51fZQoaAZoCWgPQwh5I/PIHw5VwJSGlFKUaBVLSmgWR0Bnh6eZof0VdX2UKGgGaAloD0MIGJgVinScUsCUhpRSlGgVS0JoFkdAZ4jEPUaybHV9lChoBmgJaA9DCISEKF/QVkzAlIaUUpRoFUtEaBZHQGeJu/k/8l51fZQoaAZoCWgPQwgKZeHrayUrwJSGlFKUaBVLp2gWR0BnimmelKsddX2UKGgGaAloD0MI5zV2ieo5XcCUhpRSlGgVS29oFkdAZ4rCa7VawHV9lChoBmgJaA9DCAQ5KGGmgWDAlIaUUpRoFUtwaBZHQGeLXI+4b0h1fZQoaAZoCWgPQwjpJ5zdWrBUwJSGlFKUaBVLRGgWR0Bni6paRp1zdX2UKGgGaAloD0MIhslUwaicMcCUhpRSlGgVS25oFkdAZ4yz/IbOvHV9lChoBmgJaA9DCOAu+3XnTHTAlIaUUpRoFUtmaBZHQGeMixmkFfR1fZQoaAZoCWgPQwjHSsyzkuBxwJSGlFKUaBVLd2gWR0BnkOs3hn8LdX2UKGgGaAloD0MIumWH+IdddMCUhpRSlGgVS2toFkdAZ5IFUyYXwnV9lChoBmgJaA9DCIicvp6vUFrAlIaUUpRoFUs6aBZHQGeUof0VafV1fZQoaAZoCWgPQwgmqOFbWIlewJSGlFKUaBVLWWgWR0BnlRkmQbMpdX2UKGgGaAloD0MI6MHdWXuReMCUhpRSlGgVS21oFkdAZ5agDifg8HV9lChoBmgJaA9DCIJ1HD9UulzAlIaUUpRoFUtQaBZHQGeXEiUxEfF1fZQoaAZoCWgPQwjZ0M3+QBB1wJSGlFKUaBVLTGgWR0Bnl1P3ztkXdX2UKGgGaAloD0MIjBAebdxBcsCUhpRSlGgVS1poFkdAZ5fQ9A5aNnV9lChoBmgJaA9DCAQ5KGGmwGnAlIaUUpRoFUt4aBZHQGeXtMoMKCx1fZQoaAZoCWgPQwhM3gAz359fwJSGlFKUaBVLd2gWR0BnmQUN8VpLdX2UKGgGaAloD0MIGjBI+rTdWsCUhpRSlGgVS1FoFkdAZ5n71Iy0r3V9lChoBmgJaA9DCMjvbfqzOlHAlIaUUpRoFUtQaBZHQGeasAWBSUF1fZQoaAZoCWgPQwg7qS9LO3plwJSGlFKUaBVLdGgWR0Bnm+c8TzundX2UKGgGaAloD0MIwHlx4qsaX8CUhpRSlGgVS2FoFkdAZ5vS0BwMpnV9lChoBmgJaA9DCIBHVKhuakbAlIaUUpRoFUtBaBZHQGef56t1ZDB1fZQoaAZoCWgPQwjXijbHOWVnwJSGlFKUaBVLdWgWR0Bnn9w3o9s8dX2UKGgGaAloD0MIcegtHt7hYMCUhpRSlGgVS1VoFkdAZ6C+PBBRh3V9lChoBmgJaA9DCAlx5eyd9m7AlIaUUpRoFUt/aBZHQGejJmEoOQR1fZQoaAZoCWgPQwiTNlX3SHZmwJSGlFKUaBVLSWgWR0Bno2dGy5ZsdX2UKGgGaAloD0MI0hkYeVkZccCUhpRSlGgVS0ZoFkdAZ6PdyDIzWXV9lChoBmgJaA9DCNtrQe+NnVfAlIaUUpRoFUtvaBZHQGekVrqMWGh1fZQoaAZoCWgPQwgf8wGBjo9xwJSGlFKUaBVLUGgWR0Bnpb0cwQDndX2UKGgGaAloD0MISBtHrMV2acCUhpRSlGgVS1ZoFkdAZ6YZv1lGw3V9lChoBmgJaA9DCCZXsfhNUVrAlIaUUpRoFUtnaBZHQGenKKYRdyF1fZQoaAZoCWgPQwjBGfz9IkF1wJSGlFKUaBVLTGgWR0Bnp0ZtNzsAdX2UKGgGaAloD0MINUWA07tjVcCUhpRSlGgVS1hoFkdAZ6hE9dNWVHV9lChoBmgJaA9DCJzgm6YPAnvAlIaUUpRoFUtvaBZHQGeqdv863iJ1fZQoaAZoCWgPQwhBnfLoxmtpwJSGlFKUaBVLXmgWR0Bnqv+0gKWtdX2UKGgGaAloD0MILgPOUrJcGcCUhpRSlGgVS0VoFkdAZ6vv+fh/AnV9lChoBmgJaA9DCKEUrdwLUV7AlIaUUpRoFUteaBZHQGesS1Vo6CF1fZQoaAZoCWgPQwgmNh/XRkJ5wJSGlFKUaBVLU2gWR0BntqxC6YmcdWUu"
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 10,
79
+ "n_steps": 2048,
80
+ "gamma": 0.99,
81
+ "gae_lambda": 0.95,
82
+ "ent_coef": 0.0,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 10,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
spaceship_500000/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:45a8b3a7a23ab3608e304e701c83e2efb7ab5490390f238d28589bb2304d4402
3
+ size 84829
spaceship_500000/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fad2c6f57eee4b48d7046d86ae8488dd92ab46ead8f85bcbe3eab55b97baa6c1
3
+ size 43201
spaceship_500000/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
spaceship_500000/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0