Thomas Müller
commited on
Commit
•
0b6e31e
1
Parent(s):
ef19b2f
Init commit.
Browse files- 1_Pooling/config.json +7 -0
- README.md +77 -0
- config.json +23 -0
- config_sentence_transformers.json +7 -0
- modules.json +14 -0
- pytorch_model.bin +3 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +1 -0
- tokenizer.json +0 -0
- tokenizer_config.json +1 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false
|
7 |
+
}
|
README.md
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
datasets:
|
5 |
+
- SNLI
|
6 |
+
- MNLI
|
7 |
+
pipeline_tag: sentence-similarity
|
8 |
+
tags:
|
9 |
+
- zero-shot-classification
|
10 |
+
- sentence-transformers
|
11 |
+
- feature-extraction
|
12 |
+
- sentence-similarity
|
13 |
+
- transformers
|
14 |
+
---
|
15 |
+
|
16 |
+
A Siamese network model trained for zero-shot and few-shot text classification.
|
17 |
+
|
18 |
+
The base model is [mpnet-base](https://huggingface.co/microsoft/mpnet-base).
|
19 |
+
It was trained on [SNLI](https://nlp.stanford.edu/projects/snli/) and [MNLI](https://cims.nyu.edu/~sbowman/multinli/).
|
20 |
+
|
21 |
+
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space.
|
22 |
+
|
23 |
+
## Usage (Sentence-Transformers)
|
24 |
+
|
25 |
+
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
26 |
+
|
27 |
+
```
|
28 |
+
pip install -U sentence-transformers
|
29 |
+
```
|
30 |
+
|
31 |
+
Then you can use the model like this:
|
32 |
+
|
33 |
+
```python
|
34 |
+
from sentence_transformers import SentenceTransformer
|
35 |
+
sentences = ["This is an example sentence", "Each sentence is converted"]
|
36 |
+
|
37 |
+
model = SentenceTransformer('{MODEL_NAME}')
|
38 |
+
embeddings = model.encode(sentences)
|
39 |
+
print(embeddings)
|
40 |
+
```
|
41 |
+
|
42 |
+
|
43 |
+
## Usage (HuggingFace Transformers)
|
44 |
+
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
|
45 |
+
|
46 |
+
```python
|
47 |
+
from transformers import AutoTokenizer, AutoModel
|
48 |
+
import torch
|
49 |
+
|
50 |
+
|
51 |
+
#Mean Pooling - Take attention mask into account for correct averaging
|
52 |
+
def mean_pooling(model_output, attention_mask):
|
53 |
+
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
|
54 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
55 |
+
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
56 |
+
|
57 |
+
|
58 |
+
# Sentences we want sentence embeddings for
|
59 |
+
sentences = ['This is an example sentence', 'Each sentence is converted']
|
60 |
+
|
61 |
+
# Load model from HuggingFace Hub
|
62 |
+
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
|
63 |
+
model = AutoModel.from_pretrained('{MODEL_NAME}')
|
64 |
+
|
65 |
+
# Tokenize sentences
|
66 |
+
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
67 |
+
|
68 |
+
# Compute token embeddings
|
69 |
+
with torch.no_grad():
|
70 |
+
model_output = model(**encoded_input)
|
71 |
+
|
72 |
+
# Perform pooling. In this case, max pooling.
|
73 |
+
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
74 |
+
|
75 |
+
print("Sentence embeddings:")
|
76 |
+
print(sentence_embeddings)
|
77 |
+
```
|
config.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "microsoft/mpnet-base",
|
3 |
+
"architectures": [
|
4 |
+
"MPNetModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"eos_token_id": 2,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 3072,
|
14 |
+
"layer_norm_eps": 1e-05,
|
15 |
+
"max_position_embeddings": 514,
|
16 |
+
"model_type": "mpnet",
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 12,
|
19 |
+
"pad_token_id": 1,
|
20 |
+
"relative_attention_num_buckets": 32,
|
21 |
+
"transformers_version": "4.6.0",
|
22 |
+
"vocab_size": 30527
|
23 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "2.0.0",
|
4 |
+
"transformers": "4.6.0",
|
5 |
+
"pytorch": "1.7.0"
|
6 |
+
}
|
7 |
+
}
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1c83f1bfd69577fa7210ba31a94b019b6a3f0112a2aa79a99bff92261a92cecf
|
3 |
+
size 438028807
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 128,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"bos_token": "<s>", "eos_token": "</s>", "unk_token": "[UNK]", "sep_token": "</s>", "pad_token": "<pad>", "cls_token": "<s>", "mask_token": {"content": "<mask>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": false}}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"do_lower_case": true, "bos_token": "<s>", "eos_token": "</s>", "sep_token": "</s>", "cls_token": "<s>", "unk_token": "[UNK]", "pad_token": "<pad>", "mask_token": "<mask>", "tokenize_chinese_chars": true, "strip_accents": null, "model_max_length": 512, "special_tokens_map_file": null, "name_or_path": "microsoft/mpnet-base"}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|