swdq commited on
Commit
f55242c
1 Parent(s): 02afbd6

Upload 11 files

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ data/HTDemucs4[[:space:]]FT[[:space:]]Vocals/model/04573f0d-f3cf25b2.th filter=lfs diff=lfs merge=lfs -text
data/241030_083041.wav ADDED
Binary file (269 kB). View file
 
data/241030_083112.wav ADDED
Binary file (372 kB). View file
 
data/BS Roformer/config.yaml ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ model_type: 'bs_roformer'
2
+ config_path: 'C:\Users\user\Downloads\Music-Source-Separation-Training\data\BS Roformer\model\model_bs_roformer_ep_937_sdr_10.5309.yaml'
3
+ start_checkpoint: 'C:\Users\user\Downloads\Music-Source-Separation-Training\data\BS Roformer\model\model_bs_roformer_ep_937_sdr_10.5309.ckpt'
data/BS Roformer/model/model_bs_roformer_ep_937_sdr_10.5309.ckpt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a2e825a03bc908cb04dbd88eddeefbf5147dd1cf1f95cebf453d9dbfabec494b
3
+ size 393068365
data/BS Roformer/model/model_bs_roformer_ep_937_sdr_10.5309.yaml ADDED
@@ -0,0 +1,138 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ audio:
2
+ chunk_size: 131584
3
+ dim_f: 1024
4
+ dim_t: 256
5
+ hop_length: 512
6
+ n_fft: 2048
7
+ num_channels: 2
8
+ sample_rate: 44100
9
+ min_mean_abs: 0.001
10
+
11
+ model:
12
+ dim: 384
13
+ depth: 12
14
+ stereo: true
15
+ num_stems: 1
16
+ time_transformer_depth: 1
17
+ freq_transformer_depth: 1
18
+ linear_transformer_depth: 0
19
+ freqs_per_bands: !!python/tuple
20
+ - 2
21
+ - 2
22
+ - 2
23
+ - 2
24
+ - 2
25
+ - 2
26
+ - 2
27
+ - 2
28
+ - 2
29
+ - 2
30
+ - 2
31
+ - 2
32
+ - 2
33
+ - 2
34
+ - 2
35
+ - 2
36
+ - 2
37
+ - 2
38
+ - 2
39
+ - 2
40
+ - 2
41
+ - 2
42
+ - 2
43
+ - 2
44
+ - 4
45
+ - 4
46
+ - 4
47
+ - 4
48
+ - 4
49
+ - 4
50
+ - 4
51
+ - 4
52
+ - 4
53
+ - 4
54
+ - 4
55
+ - 4
56
+ - 12
57
+ - 12
58
+ - 12
59
+ - 12
60
+ - 12
61
+ - 12
62
+ - 12
63
+ - 12
64
+ - 24
65
+ - 24
66
+ - 24
67
+ - 24
68
+ - 24
69
+ - 24
70
+ - 24
71
+ - 24
72
+ - 48
73
+ - 48
74
+ - 48
75
+ - 48
76
+ - 48
77
+ - 48
78
+ - 48
79
+ - 48
80
+ - 128
81
+ - 129
82
+ dim_head: 64
83
+ heads: 8
84
+ attn_dropout: 0.1
85
+ ff_dropout: 0.1
86
+ flash_attn: true
87
+ dim_freqs_in: 1025
88
+ stft_n_fft: 2048
89
+ stft_hop_length: 512
90
+ stft_win_length: 2048
91
+ stft_normalized: false
92
+ mask_estimator_depth: 2
93
+ multi_stft_resolution_loss_weight: 1.0
94
+ multi_stft_resolutions_window_sizes: !!python/tuple
95
+ - 4096
96
+ - 2048
97
+ - 1024
98
+ - 512
99
+ - 256
100
+ multi_stft_hop_size: 147
101
+ multi_stft_normalized: False
102
+
103
+ training:
104
+ batch_size: 4
105
+ gradient_accumulation_steps: 1
106
+ grad_clip: 0
107
+ instruments:
108
+ - vocals
109
+ - other
110
+ lr: 5.0e-05
111
+ patience: 2
112
+ reduce_factor: 0.95
113
+ target_instrument: other
114
+ num_epochs: 1000
115
+ num_steps: 1000
116
+ q: 0.95
117
+ coarse_loss_clip: true
118
+ ema_momentum: 0.999
119
+ optimizer: adam
120
+ other_fix: false # it's needed for checking on multisong dataset if other is actually instrumental
121
+ use_amp: true # enable or disable usage of mixed precision (float16) - usually it must be true
122
+
123
+ augmentations:
124
+ enable: true # enable or disable all augmentations (to fast disable if needed)
125
+ loudness: true # randomly change loudness of each stem on the range (loudness_min; loudness_max)
126
+ loudness_min: 0.5
127
+ loudness_max: 1.5
128
+ mixup: true # mix several stems of same type with some probability (only works for dataset types: 1, 2, 3)
129
+ mixup_probs: !!python/tuple # 2 additional stems of the same type (1st with prob 0.2, 2nd with prob 0.02)
130
+ - 0.2
131
+ - 0.02
132
+ mixup_loudness_min: 0.5
133
+ mixup_loudness_max: 1.5
134
+
135
+ inference:
136
+ batch_size: 8
137
+ dim_t: 512
138
+ num_overlap: 2
data/HTDemucs4 FT Vocals/config.yaml ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ model_type: 'htdemucs'
2
+ config_path: 'C:\Users\user\Downloads\Music-Source-Separation-Training\data\HTDemucs4 FT Vocals\model\config_musdb18_htdemucs.yaml'
3
+ start_checkpoint: 'C:\Users\user\Downloads\Music-Source-Separation-Training\data\HTDemucs4 FT Vocals\model\04573f0d-f3cf25b2.th'
data/HTDemucs4 FT Vocals/model/04573f0d-f3cf25b2.th ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f3cf25b222c4eed7cd49dd8b2c9597d50c18bd154090f7b919cfa5f93cf22c49
3
+ size 84141271
data/HTDemucs4 FT Vocals/model/config_musdb18_htdemucs.yaml ADDED
@@ -0,0 +1,119 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ audio:
2
+ chunk_size: 485100 # samplerate * segment
3
+ min_mean_abs: 0.001
4
+ hop_length: 1024
5
+
6
+ training:
7
+ batch_size: 8
8
+ gradient_accumulation_steps: 1
9
+ grad_clip: 0
10
+ segment: 11
11
+ shift: 1
12
+ samplerate: 44100
13
+ channels: 2
14
+ normalize: true
15
+ instruments: ['drums', 'bass', 'other', 'vocals']
16
+ target_instrument: null
17
+ num_epochs: 1000
18
+ num_steps: 1000
19
+ optimizer: adam
20
+ lr: 9.0e-05
21
+ patience: 2
22
+ reduce_factor: 0.95
23
+ q: 0.95
24
+ coarse_loss_clip: true
25
+ ema_momentum: 0.999
26
+ other_fix: false # it's needed for checking on multisong dataset if other is actually instrumental
27
+ use_amp: true # enable or disable usage of mixed precision (float16) - usually it must be true
28
+
29
+ augmentations:
30
+ enable: true # enable or disable all augmentations (to fast disable if needed)
31
+ loudness: true # randomly change loudness of each stem on the range (loudness_min; loudness_max)
32
+ loudness_min: 0.5
33
+ loudness_max: 1.5
34
+
35
+ inference:
36
+ num_overlap: 4
37
+ batch_size: 8
38
+
39
+ model: htdemucs
40
+
41
+ htdemucs: # see demucs/htdemucs.py for a detailed description
42
+ # Channels
43
+ channels: 48
44
+ channels_time:
45
+ growth: 2
46
+ # STFT
47
+ num_subbands: 1
48
+ nfft: 4096
49
+ wiener_iters: 0
50
+ end_iters: 0
51
+ wiener_residual: false
52
+ cac: true
53
+ # Main structure
54
+ depth: 4
55
+ rewrite: true
56
+ # Frequency Branch
57
+ multi_freqs: []
58
+ multi_freqs_depth: 3
59
+ freq_emb: 0.2
60
+ emb_scale: 10
61
+ emb_smooth: true
62
+ # Convolutions
63
+ kernel_size: 8
64
+ stride: 4
65
+ time_stride: 2
66
+ context: 1
67
+ context_enc: 0
68
+ # normalization
69
+ norm_starts: 4
70
+ norm_groups: 4
71
+ # DConv residual branch
72
+ dconv_mode: 3
73
+ dconv_depth: 2
74
+ dconv_comp: 8
75
+ dconv_init: 1e-3
76
+ # Before the Transformer
77
+ bottom_channels: 512
78
+ # CrossTransformer
79
+ # ------ Common to all
80
+ # Regular parameters
81
+ t_layers: 5
82
+ t_hidden_scale: 4.0
83
+ t_heads: 8
84
+ t_dropout: 0.0
85
+ t_layer_scale: True
86
+ t_gelu: True
87
+ # ------------- Positional Embedding
88
+ t_emb: sin
89
+ t_max_positions: 10000 # for the scaled embedding
90
+ t_max_period: 10000.0
91
+ t_weight_pos_embed: 1.0
92
+ t_cape_mean_normalize: True
93
+ t_cape_augment: True
94
+ t_cape_glob_loc_scale: [5000.0, 1.0, 1.4]
95
+ t_sin_random_shift: 0
96
+ # ------------- norm before a transformer encoder
97
+ t_norm_in: True
98
+ t_norm_in_group: False
99
+ # ------------- norm inside the encoder
100
+ t_group_norm: False
101
+ t_norm_first: True
102
+ t_norm_out: True
103
+ # ------------- optim
104
+ t_weight_decay: 0.0
105
+ t_lr:
106
+ # ------------- sparsity
107
+ t_sparse_self_attn: False
108
+ t_sparse_cross_attn: False
109
+ t_mask_type: diag
110
+ t_mask_random_seed: 42
111
+ t_sparse_attn_window: 400
112
+ t_global_window: 100
113
+ t_sparsity: 0.95
114
+ t_auto_sparsity: False
115
+ # Cross Encoder First (False)
116
+ t_cross_first: False
117
+ # Weight init
118
+ rescale: 0.1
119
+
data/MelBand Roformer (anvuew edition)/config.yaml ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ model_type: 'mel_band_roformer'
2
+ config_path: 'C:\Users\user\Downloads\Music-Source-Separation-Training\data\MelBand Roformer (anvuew edition)\model\dereverb_mel_band_roformer_anvuew.yaml'
3
+ start_checkpoint: 'C:\Users\user\Downloads\Music-Source-Separation-Training\data\MelBand Roformer (anvuew edition)\model\dereverb_mel_band_roformer_anvuew_sdr_19.1729.ckpt'
data/MelBand Roformer (anvuew edition)/model/dereverb_mel_band_roformer_anvuew.yaml ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ audio:
2
+ chunk_size: 352800
3
+ dim_f: 1024
4
+ dim_t: 256
5
+ hop_length: 441
6
+ n_fft: 2048
7
+ num_channels: 2
8
+ sample_rate: 44100
9
+ min_mean_abs: 0.000
10
+
11
+ model:
12
+ dim: 384
13
+ depth: 6
14
+ stereo: true
15
+ num_stems: 1
16
+ time_transformer_depth: 1
17
+ freq_transformer_depth: 1
18
+ num_bands: 60
19
+ dim_head: 64
20
+ heads: 8
21
+ attn_dropout: 0
22
+ ff_dropout: 0
23
+ flash_attn: True
24
+ dim_freqs_in: 1025
25
+ sample_rate: 44100 # needed for mel filter bank from librosa
26
+ stft_n_fft: 2048
27
+ stft_hop_length: 441
28
+ stft_win_length: 2048
29
+ stft_normalized: False
30
+ mask_estimator_depth: 2
31
+ multi_stft_resolution_loss_weight: 1.0
32
+ multi_stft_resolutions_window_sizes: !!python/tuple
33
+ - 4096
34
+ - 2048
35
+ - 1024
36
+ - 512
37
+ - 256
38
+ multi_stft_hop_size: 147
39
+ multi_stft_normalized: False
40
+
41
+ training:
42
+ batch_size: 3
43
+ gradient_accumulation_steps: 1
44
+ grad_clip: 0
45
+ instruments:
46
+ - noreverb
47
+ - reverb
48
+ lr: 5.0e-05
49
+ patience: 2
50
+ reduce_factor: 0.95
51
+ target_instrument: noreverb
52
+ num_epochs: 1000
53
+ num_steps: 4000
54
+ q: 0.95
55
+ coarse_loss_clip: false
56
+ ema_momentum: 0.999
57
+ optimizer: adamw
58
+ other_fix: true # it's needed for checking on multisong dataset if other is actually instrumental
59
+ use_amp: true # enable or disable usage of mixed precision (float16) - usually it must be true
60
+
61
+ augmentations:
62
+ enable: true # enable or disable all augmentations (to fast disable if needed)
63
+ loudness: true # randomly change loudness of each stem on the range (loudness_min; loudness_max)
64
+ loudness_min: 0.1
65
+ loudness_max: 1.0
66
+ mixup: false # mix several stems of same type with some probability (only works for dataset types: 1, 2, 3)
67
+ mixup_probs: !!python/tuple # 2 additional stems of the same type (1st with prob 0.2, 2nd with prob 0.02)
68
+ - 0.2
69
+ - 0.02
70
+ mixup_loudness_min: 0.5
71
+ mixup_loudness_max: 1.5
72
+
73
+ inference:
74
+ batch_size: 1
75
+ dim_t: 801
76
+ num_overlap: 2
data/MelBand Roformer (anvuew edition)/model/dereverb_mel_band_roformer_anvuew_sdr_19.1729.ckpt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9262877b87e9ebb0fb808a456b0a411fa677f5df31c8383c1254af531c078970
3
+ size 913107578