svjack's picture
Upload folder using huggingface_hub
9fcf2b6
raw
history blame
15.7 kB
import struct
import json
import os
import numpy as np
import torch
import safetensors.torch
this_file_dir = os.path.dirname(__file__)
vocab_dir = this_file_dir
SD1 = 0
SD2 = 1
ggml_ftype_str_to_int = {
"f32": 0,
"f16": 1,
"q4_0": 2,
"q4_1": 3,
"q5_0": 8,
"q5_1": 9,
"q8_0": 7
}
ggml_ttype_str_to_int = {
"f32": 0,
"f16": 1,
"q4_0": 2,
"q4_1": 3,
"q5_0": 6,
"q5_1": 7,
"q8_0": 8
}
QK4_0 = 32
def quantize_q4_0(x):
assert x.shape[-1] % QK4_0 == 0 and x.shape[-1] > QK4_0
x = x.reshape(-1, QK4_0)
max = np.take_along_axis(x, np.argmax(np.abs(x), axis=-1)[:, np.newaxis], axis=-1)
d = max / -8
qs = ((x / d) + 8).round().clip(min=0, max=15).astype(np.int8)
half = QK4_0 // 2
qs = qs[:, :half] | (qs[:, half:] << 4)
d = d.astype(np.float16).view(np.int8)
y = np.concatenate((d, qs), axis=-1)
return y
QK4_1 = 32
def quantize_q4_1(x):
assert x.shape[-1] % QK4_1 == 0 and x.shape[-1] > QK4_1
x = x.reshape(-1, QK4_1)
min = np.min(x, axis=-1, keepdims=True)
max = np.max(x, axis=-1, keepdims=True)
d = (max - min) / ((1 << 4) - 1)
qs = ((x - min) / d).round().clip(min=0, max=15).astype(np.int8)
half = QK4_1 // 2
qs = qs[:, :half] | (qs[:, half:] << 4)
d = d.astype(np.float16).view(np.int8)
m = min.astype(np.float16).view(np.int8)
y = np.concatenate((d, m, qs), axis=-1)
return y
QK5_0 = 32
def quantize_q5_0(x):
assert x.shape[-1] % QK5_0 == 0 and x.shape[-1] > QK5_0
x = x.reshape(-1, QK5_0)
max = np.take_along_axis(x, np.argmax(np.abs(x), axis=-1)[:, np.newaxis], axis=-1)
d = max / -16
xi = ((x / d) + 16).round().clip(min=0, max=31).astype(np.int8)
half = QK5_0 // 2
qs = (xi[:, :half] & 0x0F) | (xi[:, half:] << 4)
qh = np.zeros(qs.shape[:-1], dtype=np.int32)
for i in range(QK5_0):
qh |= ((xi[:, i] & 0x10) >> 4).astype(np.int32) << i
d = d.astype(np.float16).view(np.int8)
qh = qh[..., np.newaxis].view(np.int8)
y = np.concatenate((d, qh, qs), axis=-1)
return y
QK5_1 = 32
def quantize_q5_1(x):
assert x.shape[-1] % QK5_1 == 0 and x.shape[-1] > QK5_1
x = x.reshape(-1, QK5_1)
min = np.min(x, axis=-1, keepdims=True)
max = np.max(x, axis=-1, keepdims=True)
d = (max - min) / ((1 << 5) - 1)
xi = ((x - min) / d).round().clip(min=0, max=31).astype(np.int8)
half = QK5_1//2
qs = (xi[:, :half] & 0x0F) | (xi[:, half:] << 4)
qh = np.zeros(xi.shape[:-1], dtype=np.int32)
for i in range(QK5_1):
qh |= ((xi[:, i] & 0x10) >> 4).astype(np.int32) << i
d = d.astype(np.float16).view(np.int8)
m = min.astype(np.float16).view(np.int8)
qh = qh[..., np.newaxis].view(np.int8)
ndarray = np.concatenate((d, m, qh, qs), axis=-1)
return ndarray
QK8_0 = 32
def quantize_q8_0(x):
assert x.shape[-1] % QK8_0 == 0 and x.shape[-1] > QK8_0
x = x.reshape(-1, QK8_0)
amax = np.max(np.abs(x), axis=-1, keepdims=True)
d = amax / ((1 << 7) - 1)
qs = (x / d).round().clip(min=-128, max=127).astype(np.int8)
d = d.astype(np.float16).view(np.int8)
y = np.concatenate((d, qs), axis=-1)
return y
# copy from https://github.com/openai/CLIP/blob/main/clip/simple_tokenizer.py#L16
def bytes_to_unicode():
"""
Returns list of utf-8 byte and a corresponding list of unicode strings.
The reversible bpe codes work on unicode strings.
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
This is a significant percentage of your normal, say, 32K bpe vocab.
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
And avoids mapping to whitespace/control characters the bpe code barfs on.
"""
bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
cs = bs[:]
n = 0
for b in range(2**8):
if b not in bs:
bs.append(b)
cs.append(2**8+n)
n += 1
cs = [chr(n) for n in cs]
return dict(zip(bs, cs))
def load_model_from_file(model_path):
print("loading model from {}".format(model_path))
if model_path.lower().endswith(".safetensors"):
pl_sd = safetensors.torch.load_file(model_path, device="cpu")
else:
pl_sd = torch.load(model_path, map_location="cpu")
state_dict = pl_sd["state_dict"] if "state_dict" in pl_sd else pl_sd
print("loading model from {} completed".format(model_path))
return state_dict
def get_alpha_comprod(linear_start=0.00085, linear_end=0.0120, timesteps=1000):
betas = torch.linspace(linear_start ** 0.5, linear_end ** 0.5, timesteps, dtype=torch.float32) ** 2
alphas = 1. - betas
alphas_cumprod = np.cumprod(alphas.numpy(), axis=0)
return torch.tensor(alphas_cumprod)
unused_tensors = [
"betas",
"alphas_cumprod_prev",
"sqrt_alphas_cumprod",
"sqrt_one_minus_alphas_cumprod",
"log_one_minus_alphas_cumprod",
"sqrt_recip_alphas_cumprod",
"sqrt_recipm1_alphas_cumprod",
"posterior_variance",
"posterior_log_variance_clipped",
"posterior_mean_coef1",
"posterior_mean_coef2",
"cond_stage_model.transformer.text_model.embeddings.position_ids",
"cond_stage_model.model.logit_scale",
"cond_stage_model.model.text_projection",
"model_ema.decay",
"model_ema.num_updates",
"control_model",
"lora_te_text_model",
"embedding_manager"
]
def preprocess(state_dict):
alphas_cumprod = state_dict.get("alphas_cumprod")
if alphas_cumprod != None:
# print((np.abs(get_alpha_comprod().numpy() - alphas_cumprod.numpy()) < 0.000001).all())
pass
else:
print("no alphas_cumprod in file, generate new one")
alphas_cumprod = get_alpha_comprod()
state_dict["alphas_cumprod"] = alphas_cumprod
new_state_dict = {}
for name, w in state_dict.items():
# ignore unused tensors
if not isinstance(w, torch.Tensor):
continue
skip = False
for unused_tensor in unused_tensors:
if name.startswith(unused_tensor):
skip = True
break
if skip:
continue
# # convert BF16 to FP16
if w.dtype == torch.bfloat16:
w = w.to(torch.float16)
# convert open_clip to hf CLIPTextModel (for SD2.x)
open_clip_to_hf_clip_model = {
"cond_stage_model.model.ln_final.bias": "cond_stage_model.transformer.text_model.final_layer_norm.bias",
"cond_stage_model.model.ln_final.weight": "cond_stage_model.transformer.text_model.final_layer_norm.weight",
"cond_stage_model.model.positional_embedding": "cond_stage_model.transformer.text_model.embeddings.position_embedding.weight",
"cond_stage_model.model.token_embedding.weight": "cond_stage_model.transformer.text_model.embeddings.token_embedding.weight",
"first_stage_model.decoder.mid.attn_1.to_k.bias": "first_stage_model.decoder.mid.attn_1.k.bias",
"first_stage_model.decoder.mid.attn_1.to_k.weight": "first_stage_model.decoder.mid.attn_1.k.weight",
"first_stage_model.decoder.mid.attn_1.to_out.0.bias": "first_stage_model.decoder.mid.attn_1.proj_out.bias",
"first_stage_model.decoder.mid.attn_1.to_out.0.weight": "first_stage_model.decoder.mid.attn_1.proj_out.weight",
"first_stage_model.decoder.mid.attn_1.to_q.bias": "first_stage_model.decoder.mid.attn_1.q.bias",
"first_stage_model.decoder.mid.attn_1.to_q.weight": "first_stage_model.decoder.mid.attn_1.q.weight",
"first_stage_model.decoder.mid.attn_1.to_v.bias": "first_stage_model.decoder.mid.attn_1.v.bias",
"first_stage_model.decoder.mid.attn_1.to_v.weight": "first_stage_model.decoder.mid.attn_1.v.weight",
}
open_clip_to_hk_clip_resblock = {
"attn.out_proj.bias": "self_attn.out_proj.bias",
"attn.out_proj.weight": "self_attn.out_proj.weight",
"ln_1.bias": "layer_norm1.bias",
"ln_1.weight": "layer_norm1.weight",
"ln_2.bias": "layer_norm2.bias",
"ln_2.weight": "layer_norm2.weight",
"mlp.c_fc.bias": "mlp.fc1.bias",
"mlp.c_fc.weight": "mlp.fc1.weight",
"mlp.c_proj.bias": "mlp.fc2.bias",
"mlp.c_proj.weight": "mlp.fc2.weight",
}
open_clip_resblock_prefix = "cond_stage_model.model.transformer.resblocks."
hf_clip_resblock_prefix = "cond_stage_model.transformer.text_model.encoder.layers."
if name in open_clip_to_hf_clip_model:
new_name = open_clip_to_hf_clip_model[name]
print(f"preprocess {name} => {new_name}")
name = new_name
if name.startswith(open_clip_resblock_prefix):
remain = name[len(open_clip_resblock_prefix):]
idx = remain.split(".")[0]
suffix = remain[len(idx)+1:]
if suffix == "attn.in_proj_weight":
w_q, w_k, w_v = w.chunk(3)
for new_suffix, new_w in zip(["self_attn.q_proj.weight", "self_attn.k_proj.weight", "self_attn.v_proj.weight"], [w_q, w_k, w_v]):
new_name = hf_clip_resblock_prefix + idx + "." + new_suffix
new_state_dict[new_name] = new_w
print(f"preprocess {name}{w.size()} => {new_name}{new_w.size()}")
elif suffix == "attn.in_proj_bias":
w_q, w_k, w_v = w.chunk(3)
for new_suffix, new_w in zip(["self_attn.q_proj.bias", "self_attn.k_proj.bias", "self_attn.v_proj.bias"], [w_q, w_k, w_v]):
new_name = hf_clip_resblock_prefix + idx + "." + new_suffix
new_state_dict[new_name] = new_w
print(f"preprocess {name}{w.size()} => {new_name}{new_w.size()}")
else:
new_suffix = open_clip_to_hk_clip_resblock[suffix]
new_name = hf_clip_resblock_prefix + idx + "." + new_suffix
new_state_dict[new_name] = w
print(f"preprocess {name} => {new_name}")
continue
# convert unet transformer linear to conv2d 1x1
if name.startswith("model.diffusion_model.") and (name.endswith("proj_in.weight") or name.endswith("proj_out.weight")):
if len(w.shape) == 2:
new_w = w.unsqueeze(2).unsqueeze(3)
new_state_dict[name] = new_w
print(f"preprocess {name} {w.size()} => {name} {new_w.size()}")
continue
# convert vae attn block linear to conv2d 1x1
if name.startswith("first_stage_model.") and "attn_1" in name:
if len(w.shape) == 2:
new_w = w.unsqueeze(2).unsqueeze(3)
new_state_dict[name] = new_w
print(f"preprocess {name} {w.size()} => {name} {new_w.size()}")
continue
new_state_dict[name] = w
return new_state_dict
def convert(model_path, out_type = None, out_file=None):
# load model
with open(os.path.join(vocab_dir, "vocab.json"), encoding="utf-8") as f:
clip_vocab = json.load(f)
state_dict = load_model_from_file(model_path)
model_type = SD1
if "cond_stage_model.model.token_embedding.weight" in state_dict.keys():
model_type = SD2
print("Stable diffuison 2.x")
else:
print("Stable diffuison 1.x")
state_dict = preprocess(state_dict)
# output option
if out_type == None:
weight = state_dict["model.diffusion_model.input_blocks.0.0.weight"].numpy()
if weight.dtype == np.float32:
out_type = "f32"
elif weight.dtype == np.float16:
out_type = "f16"
elif weight.dtype == np.float64:
out_type = "f32"
else:
raise Exception("unsupported weight type %s" % weight.dtype)
if out_file == None:
out_file = os.path.splitext(os.path.basename(model_path))[0] + f"-ggml-model-{out_type}.bin"
out_file = os.path.join(os.getcwd(), out_file)
print(f"Saving GGML compatible file to {out_file}")
# convert and save
with open(out_file, "wb") as file:
# magic: ggml in hex
file.write(struct.pack("i", 0x67676D6C))
# model & file type
ftype = (model_type << 16) | ggml_ftype_str_to_int[out_type]
file.write(struct.pack("i", ftype))
# vocab
byte_encoder = bytes_to_unicode()
byte_decoder = {v: k for k, v in byte_encoder.items()}
file.write(struct.pack("i", len(clip_vocab)))
for key in clip_vocab:
text = bytearray([byte_decoder[c] for c in key])
file.write(struct.pack("i", len(text)))
file.write(text)
# weights
for name in state_dict.keys():
if not isinstance(state_dict[name], torch.Tensor):
continue
skip = False
for unused_tensor in unused_tensors:
if name.startswith(unused_tensor):
skip = True
break
if skip:
continue
if name in unused_tensors:
continue
data = state_dict[name].numpy()
n_dims = len(data.shape)
shape = data.shape
old_type = data.dtype
ttype = "f32"
if n_dims == 4:
data = data.astype(np.float16)
ttype = "f16"
elif n_dims == 2 and name[-7:] == ".weight":
if out_type == "f32":
data = data.astype(np.float32)
elif out_type == "f16":
data = data.astype(np.float16)
elif out_type == "q4_0":
data = quantize_q4_0(data)
elif out_type == "q4_1":
data = quantize_q4_1(data)
elif out_type == "q5_0":
data = quantize_q5_0(data)
elif out_type == "q5_1":
data = quantize_q5_1(data)
elif out_type == "q8_0":
data = quantize_q8_0(data)
else:
raise Exception("invalid out_type {}".format(out_type))
ttype = out_type
else:
data = data.astype(np.float32)
ttype = "f32"
print("Processing tensor: {} with shape {}, {} -> {}".format(name, data.shape, old_type, ttype))
# header
name_bytes = name.encode("utf-8")
file.write(struct.pack("iii", n_dims, len(name_bytes), ggml_ttype_str_to_int[ttype]))
for i in range(n_dims):
file.write(struct.pack("i", shape[n_dims - 1 - i]))
file.write(name_bytes)
# data
data.tofile(file)
print("Convert done")
print(f"Saved GGML compatible file to {out_file}")
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(description="Convert Stable Diffuison model to GGML compatible file format")
parser.add_argument("--out_type", choices=["f32", "f16", "q4_0", "q4_1", "q5_0", "q5_1", "q8_0"], help="output format (default: based on input)")
parser.add_argument("--out_file", help="path to write to; default: based on input and current working directory")
parser.add_argument("model_path", help="model file path (*.pth, *.pt, *.ckpt, *.safetensors)")
args = parser.parse_args()
convert(args.model_path, args.out_type, args.out_file)