|
#include <stdio.h> |
|
#include <ctime> |
|
#include <fstream> |
|
#include <iostream> |
|
#include <random> |
|
#include <string> |
|
#include <thread> |
|
#include <unordered_set> |
|
|
|
#include "stable-diffusion.h" |
|
|
|
#define STB_IMAGE_IMPLEMENTATION |
|
#include "stb_image.h" |
|
|
|
#define STB_IMAGE_WRITE_IMPLEMENTATION |
|
#define STB_IMAGE_WRITE_STATIC |
|
#include "stb_image_write.h" |
|
|
|
#if defined(__APPLE__) && defined(__MACH__) |
|
#include <sys/sysctl.h> |
|
#include <sys/types.h> |
|
#endif |
|
|
|
#if !defined(_WIN32) |
|
#include <sys/ioctl.h> |
|
#include <unistd.h> |
|
#endif |
|
|
|
#define TXT2IMG "txt2img" |
|
#define IMG2IMG "img2img" |
|
|
|
|
|
|
|
|
|
int32_t get_num_physical_cores() { |
|
#ifdef __linux__ |
|
|
|
std::unordered_set<std::string> siblings; |
|
for (uint32_t cpu = 0; cpu < UINT32_MAX; ++cpu) { |
|
std::ifstream thread_siblings("/sys/devices/system/cpu" + std::to_string(cpu) + "/topology/thread_siblings"); |
|
if (!thread_siblings.is_open()) { |
|
break; |
|
} |
|
std::string line; |
|
if (std::getline(thread_siblings, line)) { |
|
siblings.insert(line); |
|
} |
|
} |
|
if (siblings.size() > 0) { |
|
return static_cast<int32_t>(siblings.size()); |
|
} |
|
#elif defined(__APPLE__) && defined(__MACH__) |
|
int32_t num_physical_cores; |
|
size_t len = sizeof(num_physical_cores); |
|
int result = sysctlbyname("hw.perflevel0.physicalcpu", &num_physical_cores, &len, NULL, 0); |
|
if (result == 0) { |
|
return num_physical_cores; |
|
} |
|
result = sysctlbyname("hw.physicalcpu", &num_physical_cores, &len, NULL, 0); |
|
if (result == 0) { |
|
return num_physical_cores; |
|
} |
|
#elif defined(_WIN32) |
|
|
|
#endif |
|
unsigned int n_threads = std::thread::hardware_concurrency(); |
|
return n_threads > 0 ? (n_threads <= 4 ? n_threads : n_threads / 2) : 4; |
|
} |
|
|
|
const char* rng_type_to_str[] = { |
|
"std_default", |
|
"cuda", |
|
}; |
|
|
|
|
|
const char* sample_method_str[] = { |
|
"euler_a", |
|
"euler", |
|
"heun", |
|
"dpm2", |
|
"dpm++2s_a", |
|
"dpm++2m", |
|
"dpm++2mv2"}; |
|
|
|
|
|
const char* schedule_str[] = { |
|
"default", |
|
"discrete", |
|
"karras"}; |
|
|
|
struct Option { |
|
int n_threads = -1; |
|
std::string mode = TXT2IMG; |
|
std::string model_path; |
|
std::string output_path = "output.png"; |
|
std::string init_img; |
|
std::string prompt; |
|
std::string negative_prompt; |
|
float cfg_scale = 7.0f; |
|
int w = 512; |
|
int h = 512; |
|
SampleMethod sample_method = EULER_A; |
|
Schedule schedule = DEFAULT; |
|
int sample_steps = 20; |
|
float strength = 0.75f; |
|
RNGType rng_type = CUDA_RNG; |
|
int64_t seed = 42; |
|
bool verbose = false; |
|
|
|
void print() { |
|
printf("Option: \n"); |
|
printf(" n_threads: %d\n", n_threads); |
|
printf(" mode: %s\n", mode.c_str()); |
|
printf(" model_path: %s\n", model_path.c_str()); |
|
printf(" output_path: %s\n", output_path.c_str()); |
|
printf(" init_img: %s\n", init_img.c_str()); |
|
printf(" prompt: %s\n", prompt.c_str()); |
|
printf(" negative_prompt: %s\n", negative_prompt.c_str()); |
|
printf(" cfg_scale: %.2f\n", cfg_scale); |
|
printf(" width: %d\n", w); |
|
printf(" height: %d\n", h); |
|
printf(" sample_method: %s\n", sample_method_str[sample_method]); |
|
printf(" schedule: %s\n", schedule_str[schedule]); |
|
printf(" sample_steps: %d\n", sample_steps); |
|
printf(" strength: %.2f\n", strength); |
|
printf(" rng: %s\n", rng_type_to_str[rng_type]); |
|
printf(" seed: %ld\n", seed); |
|
} |
|
}; |
|
|
|
void print_usage(int argc, const char* argv[]) { |
|
printf("usage: %s [arguments]\n", argv[0]); |
|
printf("\n"); |
|
printf("arguments:\n"); |
|
printf(" -h, --help show this help message and exit\n"); |
|
printf(" -M, --mode [txt2img or img2img] generation mode (default: txt2img)\n"); |
|
printf(" -t, --threads N number of threads to use during computation (default: -1).\n"); |
|
printf(" If threads <= 0, then threads will be set to the number of CPU physical cores\n"); |
|
printf(" -m, --model [MODEL] path to model\n"); |
|
printf(" -i, --init-img [IMAGE] path to the input image, required by img2img\n"); |
|
printf(" -o, --output OUTPUT path to write result image to (default: .\\output.png)\n"); |
|
printf(" -p, --prompt [PROMPT] the prompt to render\n"); |
|
printf(" -n, --negative-prompt PROMPT the negative prompt (default: \"\")\n"); |
|
printf(" --cfg-scale SCALE unconditional guidance scale: (default: 7.0)\n"); |
|
printf(" --strength STRENGTH strength for noising/unnoising (default: 0.75)\n"); |
|
printf(" 1.0 corresponds to full destruction of information in init image\n"); |
|
printf(" -H, --height H image height, in pixel space (default: 512)\n"); |
|
printf(" -W, --width W image width, in pixel space (default: 512)\n"); |
|
printf(" --sampling-method {euler, euler_a, heun, dpm2, dpm++2s_a, dpm++2m, dpm++2mv2}\n"); |
|
printf(" sampling method (default: \"euler_a\")\n"); |
|
printf(" --steps STEPS number of sample steps (default: 20)\n"); |
|
printf(" --rng {std_default, cuda} RNG (default: cuda)\n"); |
|
printf(" -s SEED, --seed SEED RNG seed (default: 42, use random seed for < 0)\n"); |
|
printf(" --schedule {discrete, karras} Denoiser sigma schedule (default: discrete)\n"); |
|
printf(" -v, --verbose print extra info\n"); |
|
} |
|
|
|
void parse_args(int argc, const char* argv[], Option* opt) { |
|
bool invalid_arg = false; |
|
|
|
for (int i = 1; i < argc; i++) { |
|
std::string arg = argv[i]; |
|
|
|
if (arg == "-t" || arg == "--threads") { |
|
if (++i >= argc) { |
|
invalid_arg = true; |
|
break; |
|
} |
|
opt->n_threads = std::stoi(argv[i]); |
|
} else if (arg == "-M" || arg == "--mode") { |
|
if (++i >= argc) { |
|
invalid_arg = true; |
|
break; |
|
} |
|
opt->mode = argv[i]; |
|
|
|
} else if (arg == "-m" || arg == "--model") { |
|
if (++i >= argc) { |
|
invalid_arg = true; |
|
break; |
|
} |
|
opt->model_path = argv[i]; |
|
} else if (arg == "-i" || arg == "--init-img") { |
|
if (++i >= argc) { |
|
invalid_arg = true; |
|
break; |
|
} |
|
opt->init_img = argv[i]; |
|
} else if (arg == "-o" || arg == "--output") { |
|
if (++i >= argc) { |
|
invalid_arg = true; |
|
break; |
|
} |
|
opt->output_path = argv[i]; |
|
} else if (arg == "-p" || arg == "--prompt") { |
|
if (++i >= argc) { |
|
invalid_arg = true; |
|
break; |
|
} |
|
opt->prompt = argv[i]; |
|
} else if (arg == "-n" || arg == "--negative-prompt") { |
|
if (++i >= argc) { |
|
invalid_arg = true; |
|
break; |
|
} |
|
opt->negative_prompt = argv[i]; |
|
} else if (arg == "--cfg-scale") { |
|
if (++i >= argc) { |
|
invalid_arg = true; |
|
break; |
|
} |
|
opt->cfg_scale = std::stof(argv[i]); |
|
} else if (arg == "--strength") { |
|
if (++i >= argc) { |
|
invalid_arg = true; |
|
break; |
|
} |
|
opt->strength = std::stof(argv[i]); |
|
} else if (arg == "-H" || arg == "--height") { |
|
if (++i >= argc) { |
|
invalid_arg = true; |
|
break; |
|
} |
|
opt->h = std::stoi(argv[i]); |
|
} else if (arg == "-W" || arg == "--width") { |
|
if (++i >= argc) { |
|
invalid_arg = true; |
|
break; |
|
} |
|
opt->w = std::stoi(argv[i]); |
|
} else if (arg == "--steps") { |
|
if (++i >= argc) { |
|
invalid_arg = true; |
|
break; |
|
} |
|
opt->sample_steps = std::stoi(argv[i]); |
|
} else if (arg == "--rng") { |
|
if (++i >= argc) { |
|
invalid_arg = true; |
|
break; |
|
} |
|
std::string rng_type_str = argv[i]; |
|
if (rng_type_str == "std_default") { |
|
opt->rng_type = STD_DEFAULT_RNG; |
|
} else if (rng_type_str == "cuda") { |
|
opt->rng_type = CUDA_RNG; |
|
} else { |
|
invalid_arg = true; |
|
break; |
|
} |
|
} else if (arg == "--schedule") { |
|
if (++i >= argc) { |
|
invalid_arg = true; |
|
break; |
|
} |
|
const char* schedule_selected = argv[i]; |
|
int schedule_found = -1; |
|
for (int d = 0; d < N_SCHEDULES; d++) { |
|
if (!strcmp(schedule_selected, schedule_str[d])) { |
|
schedule_found = d; |
|
} |
|
} |
|
if (schedule_found == -1) { |
|
invalid_arg = true; |
|
break; |
|
} |
|
opt->schedule = (Schedule)schedule_found; |
|
} else if (arg == "-s" || arg == "--seed") { |
|
if (++i >= argc) { |
|
invalid_arg = true; |
|
break; |
|
} |
|
opt->seed = std::stoll(argv[i]); |
|
} else if (arg == "--sampling-method") { |
|
if (++i >= argc) { |
|
invalid_arg = true; |
|
break; |
|
} |
|
const char* sample_method_selected = argv[i]; |
|
int sample_method_found = -1; |
|
for (int m = 0; m < N_SAMPLE_METHODS; m++) { |
|
if (!strcmp(sample_method_selected, sample_method_str[m])) { |
|
sample_method_found = m; |
|
} |
|
} |
|
if (sample_method_found == -1) { |
|
invalid_arg = true; |
|
break; |
|
} |
|
opt->sample_method = (SampleMethod)sample_method_found; |
|
} else if (arg == "-h" || arg == "--help") { |
|
print_usage(argc, argv); |
|
exit(0); |
|
} else if (arg == "-v" || arg == "--verbose") { |
|
opt->verbose = true; |
|
} else { |
|
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str()); |
|
print_usage(argc, argv); |
|
exit(1); |
|
} |
|
if (invalid_arg) { |
|
fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str()); |
|
print_usage(argc, argv); |
|
exit(1); |
|
} |
|
} |
|
|
|
if (opt->n_threads <= 0) { |
|
opt->n_threads = get_num_physical_cores(); |
|
} |
|
|
|
if (opt->mode != TXT2IMG && opt->mode != IMG2IMG) { |
|
fprintf(stderr, "error: invalid mode %s, must be one of ['%s', '%s']\n", |
|
opt->mode.c_str(), TXT2IMG, IMG2IMG); |
|
exit(1); |
|
} |
|
|
|
if (opt->prompt.length() == 0) { |
|
fprintf(stderr, "error: the following arguments are required: prompt\n"); |
|
print_usage(argc, argv); |
|
exit(1); |
|
} |
|
|
|
if (opt->model_path.length() == 0) { |
|
fprintf(stderr, "error: the following arguments are required: model_path\n"); |
|
print_usage(argc, argv); |
|
exit(1); |
|
} |
|
|
|
if (opt->mode == IMG2IMG && opt->init_img.length() == 0) { |
|
fprintf(stderr, "error: when using the img2img mode, the following arguments are required: init-img\n"); |
|
print_usage(argc, argv); |
|
exit(1); |
|
} |
|
|
|
if (opt->output_path.length() == 0) { |
|
fprintf(stderr, "error: the following arguments are required: output_path\n"); |
|
print_usage(argc, argv); |
|
exit(1); |
|
} |
|
|
|
if (opt->w <= 0 || opt->w % 64 != 0) { |
|
fprintf(stderr, "error: the width must be a multiple of 64\n"); |
|
exit(1); |
|
} |
|
|
|
if (opt->h <= 0 || opt->h % 64 != 0) { |
|
fprintf(stderr, "error: the height must be a multiple of 64\n"); |
|
exit(1); |
|
} |
|
|
|
if (opt->sample_steps <= 0) { |
|
fprintf(stderr, "error: the sample_steps must be greater than 0\n"); |
|
exit(1); |
|
} |
|
|
|
if (opt->strength < 0.f || opt->strength > 1.f) { |
|
fprintf(stderr, "error: can only work with strength in [0.0, 1.0]\n"); |
|
exit(1); |
|
} |
|
|
|
if (opt->seed < 0) { |
|
srand((int)time(NULL)); |
|
opt->seed = rand(); |
|
} |
|
} |
|
|
|
std::string basename(const std::string& path) { |
|
size_t pos = path.find_last_of('/'); |
|
if (pos != std::string::npos) { |
|
return path.substr(pos + 1); |
|
} |
|
pos = path.find_last_of('\\'); |
|
if (pos != std::string::npos) { |
|
return path.substr(pos + 1); |
|
} |
|
return path; |
|
} |
|
|
|
int main(int argc, const char* argv[]) { |
|
Option opt; |
|
parse_args(argc, argv, &opt); |
|
|
|
if (opt.verbose) { |
|
opt.print(); |
|
printf("%s", sd_get_system_info().c_str()); |
|
set_sd_log_level(SDLogLevel::DEBUG); |
|
} |
|
|
|
bool vae_decode_only = true; |
|
std::vector<uint8_t> init_img; |
|
if (opt.mode == IMG2IMG) { |
|
vae_decode_only = false; |
|
|
|
int c = 0; |
|
unsigned char* img_data = stbi_load(opt.init_img.c_str(), &opt.w, &opt.h, &c, 3); |
|
if (img_data == NULL) { |
|
fprintf(stderr, "load image from '%s' failed\n", opt.init_img.c_str()); |
|
return 1; |
|
} |
|
if (c != 3) { |
|
fprintf(stderr, "input image must be a 3 channels RGB image, but got %d channels\n", c); |
|
free(img_data); |
|
return 1; |
|
} |
|
if (opt.w <= 0 || opt.w % 64 != 0) { |
|
fprintf(stderr, "error: the width of image must be a multiple of 64\n"); |
|
free(img_data); |
|
return 1; |
|
} |
|
if (opt.h <= 0 || opt.h % 64 != 0) { |
|
fprintf(stderr, "error: the height of image must be a multiple of 64\n"); |
|
free(img_data); |
|
return 1; |
|
} |
|
init_img.assign(img_data, img_data + (opt.w * opt.h * c)); |
|
} |
|
|
|
StableDiffusion sd(opt.n_threads, vae_decode_only, true, opt.rng_type); |
|
if (!sd.load_from_file(opt.model_path, opt.schedule)) { |
|
return 1; |
|
} |
|
|
|
std::vector<uint8_t> img; |
|
if (opt.mode == TXT2IMG) { |
|
img = sd.txt2img(opt.prompt, |
|
opt.negative_prompt, |
|
opt.cfg_scale, |
|
opt.w, |
|
opt.h, |
|
opt.sample_method, |
|
opt.sample_steps, |
|
opt.seed); |
|
} else { |
|
img = sd.img2img(init_img, |
|
opt.prompt, |
|
opt.negative_prompt, |
|
opt.cfg_scale, |
|
opt.w, |
|
opt.h, |
|
opt.sample_method, |
|
opt.sample_steps, |
|
opt.strength, |
|
opt.seed); |
|
} |
|
|
|
if (img.size() == 0) { |
|
fprintf(stderr, "generate failed\n"); |
|
return 1; |
|
} |
|
|
|
std::string parameter_string = opt.prompt + "\n"; |
|
if (opt.negative_prompt.size() != 0) { |
|
parameter_string += "Negative prompt: " + opt.negative_prompt + "\n"; |
|
} |
|
parameter_string += "Steps: " + std::to_string(opt.sample_steps) + ", "; |
|
parameter_string += "CFG scale: " + std::to_string(opt.cfg_scale) + ", "; |
|
parameter_string += "Seed: " + std::to_string(opt.seed) + ", "; |
|
parameter_string += "Size: " + std::to_string(opt.w) + "x" + std::to_string(opt.h) + ", "; |
|
parameter_string += "Model: " + basename(opt.model_path) + ", "; |
|
parameter_string += "RNG: " + std::string(rng_type_to_str[opt.rng_type]) + ", "; |
|
parameter_string += "Sampler: " + std::string(sample_method_str[opt.sample_method]); |
|
if (opt.schedule == KARRAS) { |
|
parameter_string += " karras"; |
|
} |
|
parameter_string += ", "; |
|
parameter_string += "Version: stable-diffusion.cpp"; |
|
|
|
stbi_write_png(opt.output_path.c_str(), opt.w, opt.h, 3, img.data(), 0, parameter_string.c_str()); |
|
printf("save result image to '%s'\n", opt.output_path.c_str()); |
|
|
|
return 0; |
|
} |
|
|