svjack's picture
Upload folder using huggingface_hub
9fcf2b6
raw
history blame
16.6 kB
#include <stdio.h>
#include <ctime>
#include <fstream>
#include <iostream>
#include <random>
#include <string>
#include <thread>
#include <unordered_set>
#include "stable-diffusion.h"
#define STB_IMAGE_IMPLEMENTATION
#include "stb_image.h"
#define STB_IMAGE_WRITE_IMPLEMENTATION
#define STB_IMAGE_WRITE_STATIC
#include "stb_image_write.h"
#if defined(__APPLE__) && defined(__MACH__)
#include <sys/sysctl.h>
#include <sys/types.h>
#endif
#if !defined(_WIN32)
#include <sys/ioctl.h>
#include <unistd.h>
#endif
#define TXT2IMG "txt2img"
#define IMG2IMG "img2img"
// get_num_physical_cores is copy from
// https://github.com/ggerganov/llama.cpp/blob/master/examples/common.cpp
// LICENSE: https://github.com/ggerganov/llama.cpp/blob/master/LICENSE
int32_t get_num_physical_cores() {
#ifdef __linux__
// enumerate the set of thread siblings, num entries is num cores
std::unordered_set<std::string> siblings;
for (uint32_t cpu = 0; cpu < UINT32_MAX; ++cpu) {
std::ifstream thread_siblings("/sys/devices/system/cpu" + std::to_string(cpu) + "/topology/thread_siblings");
if (!thread_siblings.is_open()) {
break; // no more cpus
}
std::string line;
if (std::getline(thread_siblings, line)) {
siblings.insert(line);
}
}
if (siblings.size() > 0) {
return static_cast<int32_t>(siblings.size());
}
#elif defined(__APPLE__) && defined(__MACH__)
int32_t num_physical_cores;
size_t len = sizeof(num_physical_cores);
int result = sysctlbyname("hw.perflevel0.physicalcpu", &num_physical_cores, &len, NULL, 0);
if (result == 0) {
return num_physical_cores;
}
result = sysctlbyname("hw.physicalcpu", &num_physical_cores, &len, NULL, 0);
if (result == 0) {
return num_physical_cores;
}
#elif defined(_WIN32)
// TODO: Implement
#endif
unsigned int n_threads = std::thread::hardware_concurrency();
return n_threads > 0 ? (n_threads <= 4 ? n_threads : n_threads / 2) : 4;
}
const char* rng_type_to_str[] = {
"std_default",
"cuda",
};
// Names of the sampler method, same order as enum SampleMethod in stable-diffusion.h
const char* sample_method_str[] = {
"euler_a",
"euler",
"heun",
"dpm2",
"dpm++2s_a",
"dpm++2m",
"dpm++2mv2"};
// Names of the sigma schedule overrides, same order as Schedule in stable-diffusion.h
const char* schedule_str[] = {
"default",
"discrete",
"karras"};
struct Option {
int n_threads = -1;
std::string mode = TXT2IMG;
std::string model_path;
std::string output_path = "output.png";
std::string init_img;
std::string prompt;
std::string negative_prompt;
float cfg_scale = 7.0f;
int w = 512;
int h = 512;
SampleMethod sample_method = EULER_A;
Schedule schedule = DEFAULT;
int sample_steps = 20;
float strength = 0.75f;
RNGType rng_type = CUDA_RNG;
int64_t seed = 42;
bool verbose = false;
void print() {
printf("Option: \n");
printf(" n_threads: %d\n", n_threads);
printf(" mode: %s\n", mode.c_str());
printf(" model_path: %s\n", model_path.c_str());
printf(" output_path: %s\n", output_path.c_str());
printf(" init_img: %s\n", init_img.c_str());
printf(" prompt: %s\n", prompt.c_str());
printf(" negative_prompt: %s\n", negative_prompt.c_str());
printf(" cfg_scale: %.2f\n", cfg_scale);
printf(" width: %d\n", w);
printf(" height: %d\n", h);
printf(" sample_method: %s\n", sample_method_str[sample_method]);
printf(" schedule: %s\n", schedule_str[schedule]);
printf(" sample_steps: %d\n", sample_steps);
printf(" strength: %.2f\n", strength);
printf(" rng: %s\n", rng_type_to_str[rng_type]);
printf(" seed: %ld\n", seed);
}
};
void print_usage(int argc, const char* argv[]) {
printf("usage: %s [arguments]\n", argv[0]);
printf("\n");
printf("arguments:\n");
printf(" -h, --help show this help message and exit\n");
printf(" -M, --mode [txt2img or img2img] generation mode (default: txt2img)\n");
printf(" -t, --threads N number of threads to use during computation (default: -1).\n");
printf(" If threads <= 0, then threads will be set to the number of CPU physical cores\n");
printf(" -m, --model [MODEL] path to model\n");
printf(" -i, --init-img [IMAGE] path to the input image, required by img2img\n");
printf(" -o, --output OUTPUT path to write result image to (default: .\\output.png)\n");
printf(" -p, --prompt [PROMPT] the prompt to render\n");
printf(" -n, --negative-prompt PROMPT the negative prompt (default: \"\")\n");
printf(" --cfg-scale SCALE unconditional guidance scale: (default: 7.0)\n");
printf(" --strength STRENGTH strength for noising/unnoising (default: 0.75)\n");
printf(" 1.0 corresponds to full destruction of information in init image\n");
printf(" -H, --height H image height, in pixel space (default: 512)\n");
printf(" -W, --width W image width, in pixel space (default: 512)\n");
printf(" --sampling-method {euler, euler_a, heun, dpm2, dpm++2s_a, dpm++2m, dpm++2mv2}\n");
printf(" sampling method (default: \"euler_a\")\n");
printf(" --steps STEPS number of sample steps (default: 20)\n");
printf(" --rng {std_default, cuda} RNG (default: cuda)\n");
printf(" -s SEED, --seed SEED RNG seed (default: 42, use random seed for < 0)\n");
printf(" --schedule {discrete, karras} Denoiser sigma schedule (default: discrete)\n");
printf(" -v, --verbose print extra info\n");
}
void parse_args(int argc, const char* argv[], Option* opt) {
bool invalid_arg = false;
for (int i = 1; i < argc; i++) {
std::string arg = argv[i];
if (arg == "-t" || arg == "--threads") {
if (++i >= argc) {
invalid_arg = true;
break;
}
opt->n_threads = std::stoi(argv[i]);
} else if (arg == "-M" || arg == "--mode") {
if (++i >= argc) {
invalid_arg = true;
break;
}
opt->mode = argv[i];
} else if (arg == "-m" || arg == "--model") {
if (++i >= argc) {
invalid_arg = true;
break;
}
opt->model_path = argv[i];
} else if (arg == "-i" || arg == "--init-img") {
if (++i >= argc) {
invalid_arg = true;
break;
}
opt->init_img = argv[i];
} else if (arg == "-o" || arg == "--output") {
if (++i >= argc) {
invalid_arg = true;
break;
}
opt->output_path = argv[i];
} else if (arg == "-p" || arg == "--prompt") {
if (++i >= argc) {
invalid_arg = true;
break;
}
opt->prompt = argv[i];
} else if (arg == "-n" || arg == "--negative-prompt") {
if (++i >= argc) {
invalid_arg = true;
break;
}
opt->negative_prompt = argv[i];
} else if (arg == "--cfg-scale") {
if (++i >= argc) {
invalid_arg = true;
break;
}
opt->cfg_scale = std::stof(argv[i]);
} else if (arg == "--strength") {
if (++i >= argc) {
invalid_arg = true;
break;
}
opt->strength = std::stof(argv[i]);
} else if (arg == "-H" || arg == "--height") {
if (++i >= argc) {
invalid_arg = true;
break;
}
opt->h = std::stoi(argv[i]);
} else if (arg == "-W" || arg == "--width") {
if (++i >= argc) {
invalid_arg = true;
break;
}
opt->w = std::stoi(argv[i]);
} else if (arg == "--steps") {
if (++i >= argc) {
invalid_arg = true;
break;
}
opt->sample_steps = std::stoi(argv[i]);
} else if (arg == "--rng") {
if (++i >= argc) {
invalid_arg = true;
break;
}
std::string rng_type_str = argv[i];
if (rng_type_str == "std_default") {
opt->rng_type = STD_DEFAULT_RNG;
} else if (rng_type_str == "cuda") {
opt->rng_type = CUDA_RNG;
} else {
invalid_arg = true;
break;
}
} else if (arg == "--schedule") {
if (++i >= argc) {
invalid_arg = true;
break;
}
const char* schedule_selected = argv[i];
int schedule_found = -1;
for (int d = 0; d < N_SCHEDULES; d++) {
if (!strcmp(schedule_selected, schedule_str[d])) {
schedule_found = d;
}
}
if (schedule_found == -1) {
invalid_arg = true;
break;
}
opt->schedule = (Schedule)schedule_found;
} else if (arg == "-s" || arg == "--seed") {
if (++i >= argc) {
invalid_arg = true;
break;
}
opt->seed = std::stoll(argv[i]);
} else if (arg == "--sampling-method") {
if (++i >= argc) {
invalid_arg = true;
break;
}
const char* sample_method_selected = argv[i];
int sample_method_found = -1;
for (int m = 0; m < N_SAMPLE_METHODS; m++) {
if (!strcmp(sample_method_selected, sample_method_str[m])) {
sample_method_found = m;
}
}
if (sample_method_found == -1) {
invalid_arg = true;
break;
}
opt->sample_method = (SampleMethod)sample_method_found;
} else if (arg == "-h" || arg == "--help") {
print_usage(argc, argv);
exit(0);
} else if (arg == "-v" || arg == "--verbose") {
opt->verbose = true;
} else {
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
print_usage(argc, argv);
exit(1);
}
if (invalid_arg) {
fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
print_usage(argc, argv);
exit(1);
}
}
if (opt->n_threads <= 0) {
opt->n_threads = get_num_physical_cores();
}
if (opt->mode != TXT2IMG && opt->mode != IMG2IMG) {
fprintf(stderr, "error: invalid mode %s, must be one of ['%s', '%s']\n",
opt->mode.c_str(), TXT2IMG, IMG2IMG);
exit(1);
}
if (opt->prompt.length() == 0) {
fprintf(stderr, "error: the following arguments are required: prompt\n");
print_usage(argc, argv);
exit(1);
}
if (opt->model_path.length() == 0) {
fprintf(stderr, "error: the following arguments are required: model_path\n");
print_usage(argc, argv);
exit(1);
}
if (opt->mode == IMG2IMG && opt->init_img.length() == 0) {
fprintf(stderr, "error: when using the img2img mode, the following arguments are required: init-img\n");
print_usage(argc, argv);
exit(1);
}
if (opt->output_path.length() == 0) {
fprintf(stderr, "error: the following arguments are required: output_path\n");
print_usage(argc, argv);
exit(1);
}
if (opt->w <= 0 || opt->w % 64 != 0) {
fprintf(stderr, "error: the width must be a multiple of 64\n");
exit(1);
}
if (opt->h <= 0 || opt->h % 64 != 0) {
fprintf(stderr, "error: the height must be a multiple of 64\n");
exit(1);
}
if (opt->sample_steps <= 0) {
fprintf(stderr, "error: the sample_steps must be greater than 0\n");
exit(1);
}
if (opt->strength < 0.f || opt->strength > 1.f) {
fprintf(stderr, "error: can only work with strength in [0.0, 1.0]\n");
exit(1);
}
if (opt->seed < 0) {
srand((int)time(NULL));
opt->seed = rand();
}
}
std::string basename(const std::string& path) {
size_t pos = path.find_last_of('/');
if (pos != std::string::npos) {
return path.substr(pos + 1);
}
pos = path.find_last_of('\\');
if (pos != std::string::npos) {
return path.substr(pos + 1);
}
return path;
}
int main(int argc, const char* argv[]) {
Option opt;
parse_args(argc, argv, &opt);
if (opt.verbose) {
opt.print();
printf("%s", sd_get_system_info().c_str());
set_sd_log_level(SDLogLevel::DEBUG);
}
bool vae_decode_only = true;
std::vector<uint8_t> init_img;
if (opt.mode == IMG2IMG) {
vae_decode_only = false;
int c = 0;
unsigned char* img_data = stbi_load(opt.init_img.c_str(), &opt.w, &opt.h, &c, 3);
if (img_data == NULL) {
fprintf(stderr, "load image from '%s' failed\n", opt.init_img.c_str());
return 1;
}
if (c != 3) {
fprintf(stderr, "input image must be a 3 channels RGB image, but got %d channels\n", c);
free(img_data);
return 1;
}
if (opt.w <= 0 || opt.w % 64 != 0) {
fprintf(stderr, "error: the width of image must be a multiple of 64\n");
free(img_data);
return 1;
}
if (opt.h <= 0 || opt.h % 64 != 0) {
fprintf(stderr, "error: the height of image must be a multiple of 64\n");
free(img_data);
return 1;
}
init_img.assign(img_data, img_data + (opt.w * opt.h * c));
}
StableDiffusion sd(opt.n_threads, vae_decode_only, true, opt.rng_type);
if (!sd.load_from_file(opt.model_path, opt.schedule)) {
return 1;
}
std::vector<uint8_t> img;
if (opt.mode == TXT2IMG) {
img = sd.txt2img(opt.prompt,
opt.negative_prompt,
opt.cfg_scale,
opt.w,
opt.h,
opt.sample_method,
opt.sample_steps,
opt.seed);
} else {
img = sd.img2img(init_img,
opt.prompt,
opt.negative_prompt,
opt.cfg_scale,
opt.w,
opt.h,
opt.sample_method,
opt.sample_steps,
opt.strength,
opt.seed);
}
if (img.size() == 0) {
fprintf(stderr, "generate failed\n");
return 1;
}
std::string parameter_string = opt.prompt + "\n";
if (opt.negative_prompt.size() != 0) {
parameter_string += "Negative prompt: " + opt.negative_prompt + "\n";
}
parameter_string += "Steps: " + std::to_string(opt.sample_steps) + ", ";
parameter_string += "CFG scale: " + std::to_string(opt.cfg_scale) + ", ";
parameter_string += "Seed: " + std::to_string(opt.seed) + ", ";
parameter_string += "Size: " + std::to_string(opt.w) + "x" + std::to_string(opt.h) + ", ";
parameter_string += "Model: " + basename(opt.model_path) + ", ";
parameter_string += "RNG: " + std::string(rng_type_to_str[opt.rng_type]) + ", ";
parameter_string += "Sampler: " + std::string(sample_method_str[opt.sample_method]);
if (opt.schedule == KARRAS) {
parameter_string += " karras";
}
parameter_string += ", ";
parameter_string += "Version: stable-diffusion.cpp";
stbi_write_png(opt.output_path.c_str(), opt.w, opt.h, 3, img.data(), 0, parameter_string.c_str());
printf("save result image to '%s'\n", opt.output_path.c_str());
return 0;
}