svjack's picture
Upload folder using huggingface_hub
13d3ba0
const std = @import("std");
const Thread = std.Thread;
const c = @cImport({
@cInclude("ggml/ggml.h");
});
fn is_close(a: f32, b: f32, epsilon: f32) bool {
return std.math.fabs(a - b) < epsilon;
}
pub fn main() !void {
const params = .{
.mem_size = 128*1024*1024,
.mem_buffer = null,
.no_alloc = false,
};
var opt_params = c.ggml_opt_default_params(c.GGML_OPT_LBFGS);
const nthreads = try Thread.getCpuCount();
opt_params.n_threads = @intCast(nthreads);
std.debug.print("test2: n_threads:{}\n", .{opt_params.n_threads});
const xi = [_]f32{ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0 };
const yi = [_]f32{ 15.0, 25.0, 35.0, 45.0, 55.0, 65.0, 75.0, 85.0, 95.0, 105.0 };
const n = xi.len;
const ctx0 = c.ggml_init(params);
defer c.ggml_free(ctx0);
const x = c.ggml_new_tensor_1d(ctx0, c.GGML_TYPE_F32, n);
const y = c.ggml_new_tensor_1d(ctx0, c.GGML_TYPE_F32, n);
for (0..n) |i| {
const x_data_pointer: [*]f32 = @ptrCast(@alignCast(x.*.data));
x_data_pointer[i] = xi[i];
const y_data_pointer: [*]f32 = @ptrCast(@alignCast(y.*.data));
y_data_pointer[i] = yi[i];
}
{
const t0 = c.ggml_new_f32(ctx0, 0.0);
const t1 = c.ggml_new_f32(ctx0, 0.0);
// initialize auto-diff parameters:
_ = c.ggml_set_param(ctx0, t0);
_ = c.ggml_set_param(ctx0, t1);
// f = sum_i[(t0 + t1*x_i - y_i)^2]/(2n)
const f =
c.ggml_div(ctx0,
c.ggml_sum(ctx0,
c.ggml_sqr(ctx0,
c.ggml_sub(ctx0,
c.ggml_add(ctx0,
c.ggml_mul(ctx0, x, c.ggml_repeat(ctx0, t1, x)),
c.ggml_repeat(ctx0, t0, x)),
y)
)
),
c.ggml_new_f32(ctx0, @as(f32, 2.0)*n));
const res = c.ggml_opt(null, opt_params, f);
std.debug.print("t0 = {d:.6}\n", .{c.ggml_get_f32_1d(t0, 0)});
std.debug.print("t1 = {d:.6}\n", .{c.ggml_get_f32_1d(t1, 0)});
try std.testing.expect(res == c.GGML_OPT_OK);
try std.testing.expect(is_close(c.ggml_get_f32_1d(t0, 0), 5.0, 1e-3));
try std.testing.expect(is_close(c.ggml_get_f32_1d(t1, 0), 10.0, 1e-3));
}
{
const t0 = c.ggml_new_f32(ctx0, -1.0);
const t1 = c.ggml_new_f32(ctx0, 9.0);
_ = c.ggml_set_param(ctx0, t0);
_ = c.ggml_set_param(ctx0, t1);
// f = 0.5*sum_i[abs(t0 + t1*x_i - y_i)]/n
const f =
c.ggml_mul(ctx0,
c.ggml_new_f32(ctx0, @as(f32, 1.0)/(2*n)),
c.ggml_sum(ctx0,
c.ggml_abs(ctx0,
c.ggml_sub(ctx0,
c.ggml_add(ctx0,
c.ggml_mul(ctx0, x, c.ggml_repeat(ctx0, t1, x)),
c.ggml_repeat(ctx0, t0, x)),
y)
)
)
);
const res = c.ggml_opt(null, opt_params, f);
try std.testing.expect(res == c.GGML_OPT_OK);
try std.testing.expect(is_close(c.ggml_get_f32_1d(t0, 0), 5.0, 1e-2));
try std.testing.expect(is_close(c.ggml_get_f32_1d(t1, 0), 10.0, 1e-2));
}
{
const t0 = c.ggml_new_f32(ctx0, 5.0);
const t1 = c.ggml_new_f32(ctx0, -4.0);
_ = c.ggml_set_param(ctx0, t0);
_ = c.ggml_set_param(ctx0, t1);
// f = t0^2 + t1^2
const f =
c.ggml_add(ctx0,
c.ggml_sqr(ctx0, t0),
c.ggml_sqr(ctx0, t1)
);
const res = c.ggml_opt(null, opt_params, f);
try std.testing.expect(res == c.GGML_OPT_OK);
try std.testing.expect(is_close(c.ggml_get_f32_1d(f, 0), 0.0, 1e-3));
try std.testing.expect(is_close(c.ggml_get_f32_1d(t0, 0), 0.0, 1e-3));
try std.testing.expect(is_close(c.ggml_get_f32_1d(t1, 0), 0.0, 1e-3));
}
/////////////////////////////////////////
{
const t0 = c.ggml_new_f32(ctx0, -7.0);
const t1 = c.ggml_new_f32(ctx0, 8.0);
_ = c.ggml_set_param(ctx0, t0);
_ = c.ggml_set_param(ctx0, t1);
// f = (t0 + 2*t1 - 7)^2 + (2*t0 + t1 - 5)^2
const f =
c.ggml_add(ctx0,
c.ggml_sqr(ctx0,
c.ggml_sub(ctx0,
c.ggml_add(ctx0,
t0,
c.ggml_mul(ctx0, t1, c.ggml_new_f32(ctx0, 2.0))),
c.ggml_new_f32(ctx0, 7.0)
)
),
c.ggml_sqr(ctx0,
c.ggml_sub(ctx0,
c.ggml_add(ctx0,
c.ggml_mul(ctx0, t0, c.ggml_new_f32(ctx0, 2.0)),
t1),
c.ggml_new_f32(ctx0, 5.0)
)
)
);
const res = c.ggml_opt(null, opt_params, f);
try std.testing.expect(res == c.GGML_OPT_OK);
try std.testing.expect(is_close(c.ggml_get_f32_1d(f, 0), 0.0, 1e-3));
try std.testing.expect(is_close(c.ggml_get_f32_1d(t0, 0), 1.0, 1e-3));
try std.testing.expect(is_close(c.ggml_get_f32_1d(t1, 0), 3.0, 1e-3));
}
_ = try std.io.getStdIn().reader().readByte();
}