svjack's picture
Upload 1392 files
43b7e92 verified
# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import random
import unittest
import numpy as np
import torch
from transformers import (
CLIPImageProcessor,
CLIPTextConfig,
CLIPTextModel,
CLIPTokenizer,
CLIPVisionConfig,
CLIPVisionModelWithProjection,
)
from diffusers import (
AutoencoderKL,
DDIMScheduler,
I2VGenXLPipeline,
)
from diffusers.models.unets import I2VGenXLUNet
from diffusers.utils import is_xformers_available, load_image
from diffusers.utils.testing_utils import (
enable_full_determinism,
floats_tensor,
numpy_cosine_similarity_distance,
print_tensor_test,
require_torch_gpu,
skip_mps,
slow,
torch_device,
)
from ..test_pipelines_common import PipelineTesterMixin, SDFunctionTesterMixin
enable_full_determinism()
@skip_mps
class I2VGenXLPipelineFastTests(SDFunctionTesterMixin, PipelineTesterMixin, unittest.TestCase):
pipeline_class = I2VGenXLPipeline
params = frozenset(["prompt", "negative_prompt", "image"])
batch_params = frozenset(["prompt", "negative_prompt", "image", "generator"])
# No `output_type`.
required_optional_params = frozenset(["num_inference_steps", "generator", "latents", "return_dict"])
def get_dummy_components(self):
torch.manual_seed(0)
scheduler = DDIMScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_one=False,
)
torch.manual_seed(0)
unet = I2VGenXLUNet(
block_out_channels=(4, 8),
layers_per_block=1,
sample_size=32,
in_channels=4,
out_channels=4,
down_block_types=("CrossAttnDownBlock3D", "DownBlock3D"),
up_block_types=("UpBlock3D", "CrossAttnUpBlock3D"),
cross_attention_dim=4,
attention_head_dim=4,
num_attention_heads=None,
norm_num_groups=2,
)
torch.manual_seed(0)
vae = AutoencoderKL(
block_out_channels=(8,),
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D"],
latent_channels=4,
sample_size=32,
norm_num_groups=2,
)
torch.manual_seed(0)
text_encoder_config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=4,
intermediate_size=16,
layer_norm_eps=1e-05,
num_attention_heads=2,
num_hidden_layers=2,
pad_token_id=1,
vocab_size=1000,
hidden_act="gelu",
projection_dim=32,
)
text_encoder = CLIPTextModel(text_encoder_config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
torch.manual_seed(0)
vision_encoder_config = CLIPVisionConfig(
hidden_size=4,
projection_dim=4,
num_hidden_layers=2,
num_attention_heads=2,
image_size=32,
intermediate_size=16,
patch_size=1,
)
image_encoder = CLIPVisionModelWithProjection(vision_encoder_config)
torch.manual_seed(0)
feature_extractor = CLIPImageProcessor(crop_size=32, size=32)
components = {
"unet": unet,
"scheduler": scheduler,
"vae": vae,
"text_encoder": text_encoder,
"image_encoder": image_encoder,
"tokenizer": tokenizer,
"feature_extractor": feature_extractor,
}
return components
def get_dummy_inputs(self, device, seed=0):
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
input_image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device)
inputs = {
"prompt": "A painting of a squirrel eating a burger",
"image": input_image,
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 6.0,
"output_type": "pt",
"num_frames": 4,
"width": 32,
"height": 32,
}
return inputs
def test_text_to_video_default_case(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe = pipe.to(device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
inputs["output_type"] = "np"
frames = pipe(**inputs).frames
image_slice = frames[0][0][-3:, -3:, -1]
assert frames[0][0].shape == (32, 32, 3)
expected_slice = np.array([0.5146, 0.6525, 0.6032, 0.5204, 0.5675, 0.4125, 0.3016, 0.5172, 0.4095])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_save_load_local(self):
super().test_save_load_local(expected_max_difference=0.006)
def test_sequential_cpu_offload_forward_pass(self):
super().test_sequential_cpu_offload_forward_pass(expected_max_diff=0.008)
def test_dict_tuple_outputs_equivalent(self):
super().test_dict_tuple_outputs_equivalent(expected_max_difference=0.008)
def test_save_load_optional_components(self):
super().test_save_load_optional_components(expected_max_difference=0.008)
@unittest.skip("Deprecated functionality")
def test_attention_slicing_forward_pass(self):
pass
@unittest.skipIf(
torch_device != "cuda" or not is_xformers_available(),
reason="XFormers attention is only available with CUDA and `xformers` installed",
)
def test_xformers_attention_forwardGenerator_pass(self):
self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=False, expected_max_diff=1e-2)
def test_inference_batch_single_identical(self):
super().test_inference_batch_single_identical(batch_size=2, expected_max_diff=0.008)
def test_model_cpu_offload_forward_pass(self):
super().test_model_cpu_offload_forward_pass(expected_max_diff=0.008)
def test_num_videos_per_prompt(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe = pipe.to(device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
inputs["output_type"] = "np"
frames = pipe(**inputs, num_videos_per_prompt=2).frames
assert frames.shape == (2, 4, 32, 32, 3)
assert frames[0][0].shape == (32, 32, 3)
image_slice = frames[0][0][-3:, -3:, -1]
expected_slice = np.array([0.5146, 0.6525, 0.6032, 0.5204, 0.5675, 0.4125, 0.3016, 0.5172, 0.4095])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
@slow
@require_torch_gpu
class I2VGenXLPipelineSlowTests(unittest.TestCase):
def setUp(self):
# clean up the VRAM before each test
super().setUp()
gc.collect()
torch.cuda.empty_cache()
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def test_i2vgen_xl(self):
pipe = I2VGenXLPipeline.from_pretrained("ali-vilab/i2vgen-xl", torch_dtype=torch.float16, variant="fp16")
pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=None)
image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/pix2pix/cat_6.png?download=true"
)
generator = torch.Generator("cpu").manual_seed(0)
num_frames = 3
output = pipe(
image=image,
prompt="my cat",
num_frames=num_frames,
generator=generator,
num_inference_steps=3,
output_type="np",
)
image = output.frames[0]
assert image.shape == (num_frames, 704, 1280, 3)
image_slice = image[0, -3:, -3:, -1]
print_tensor_test(image_slice.flatten())
expected_slice = np.array([0.5482, 0.6244, 0.6274, 0.4584, 0.5935, 0.5937, 0.4579, 0.5767, 0.5892])
assert numpy_cosine_similarity_distance(image_slice.flatten(), expected_slice.flatten()) < 1e-3