|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import gc |
|
import random |
|
import unittest |
|
|
|
import numpy as np |
|
import torch |
|
from transformers import ( |
|
CLIPImageProcessor, |
|
CLIPTextConfig, |
|
CLIPTextModel, |
|
CLIPTokenizer, |
|
CLIPVisionConfig, |
|
CLIPVisionModelWithProjection, |
|
) |
|
|
|
from diffusers import ( |
|
AutoencoderKL, |
|
DDIMScheduler, |
|
I2VGenXLPipeline, |
|
) |
|
from diffusers.models.unets import I2VGenXLUNet |
|
from diffusers.utils import is_xformers_available, load_image |
|
from diffusers.utils.testing_utils import ( |
|
enable_full_determinism, |
|
floats_tensor, |
|
numpy_cosine_similarity_distance, |
|
print_tensor_test, |
|
require_torch_gpu, |
|
skip_mps, |
|
slow, |
|
torch_device, |
|
) |
|
|
|
from ..test_pipelines_common import PipelineTesterMixin, SDFunctionTesterMixin |
|
|
|
|
|
enable_full_determinism() |
|
|
|
|
|
@skip_mps |
|
class I2VGenXLPipelineFastTests(SDFunctionTesterMixin, PipelineTesterMixin, unittest.TestCase): |
|
pipeline_class = I2VGenXLPipeline |
|
params = frozenset(["prompt", "negative_prompt", "image"]) |
|
batch_params = frozenset(["prompt", "negative_prompt", "image", "generator"]) |
|
|
|
required_optional_params = frozenset(["num_inference_steps", "generator", "latents", "return_dict"]) |
|
|
|
def get_dummy_components(self): |
|
torch.manual_seed(0) |
|
scheduler = DDIMScheduler( |
|
beta_start=0.00085, |
|
beta_end=0.012, |
|
beta_schedule="scaled_linear", |
|
clip_sample=False, |
|
set_alpha_to_one=False, |
|
) |
|
|
|
torch.manual_seed(0) |
|
unet = I2VGenXLUNet( |
|
block_out_channels=(4, 8), |
|
layers_per_block=1, |
|
sample_size=32, |
|
in_channels=4, |
|
out_channels=4, |
|
down_block_types=("CrossAttnDownBlock3D", "DownBlock3D"), |
|
up_block_types=("UpBlock3D", "CrossAttnUpBlock3D"), |
|
cross_attention_dim=4, |
|
attention_head_dim=4, |
|
num_attention_heads=None, |
|
norm_num_groups=2, |
|
) |
|
|
|
torch.manual_seed(0) |
|
vae = AutoencoderKL( |
|
block_out_channels=(8,), |
|
in_channels=3, |
|
out_channels=3, |
|
down_block_types=["DownEncoderBlock2D"], |
|
up_block_types=["UpDecoderBlock2D"], |
|
latent_channels=4, |
|
sample_size=32, |
|
norm_num_groups=2, |
|
) |
|
torch.manual_seed(0) |
|
text_encoder_config = CLIPTextConfig( |
|
bos_token_id=0, |
|
eos_token_id=2, |
|
hidden_size=4, |
|
intermediate_size=16, |
|
layer_norm_eps=1e-05, |
|
num_attention_heads=2, |
|
num_hidden_layers=2, |
|
pad_token_id=1, |
|
vocab_size=1000, |
|
hidden_act="gelu", |
|
projection_dim=32, |
|
) |
|
text_encoder = CLIPTextModel(text_encoder_config) |
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
|
|
torch.manual_seed(0) |
|
vision_encoder_config = CLIPVisionConfig( |
|
hidden_size=4, |
|
projection_dim=4, |
|
num_hidden_layers=2, |
|
num_attention_heads=2, |
|
image_size=32, |
|
intermediate_size=16, |
|
patch_size=1, |
|
) |
|
image_encoder = CLIPVisionModelWithProjection(vision_encoder_config) |
|
|
|
torch.manual_seed(0) |
|
feature_extractor = CLIPImageProcessor(crop_size=32, size=32) |
|
|
|
components = { |
|
"unet": unet, |
|
"scheduler": scheduler, |
|
"vae": vae, |
|
"text_encoder": text_encoder, |
|
"image_encoder": image_encoder, |
|
"tokenizer": tokenizer, |
|
"feature_extractor": feature_extractor, |
|
} |
|
return components |
|
|
|
def get_dummy_inputs(self, device, seed=0): |
|
if str(device).startswith("mps"): |
|
generator = torch.manual_seed(seed) |
|
else: |
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
|
|
input_image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device) |
|
inputs = { |
|
"prompt": "A painting of a squirrel eating a burger", |
|
"image": input_image, |
|
"generator": generator, |
|
"num_inference_steps": 2, |
|
"guidance_scale": 6.0, |
|
"output_type": "pt", |
|
"num_frames": 4, |
|
"width": 32, |
|
"height": 32, |
|
} |
|
return inputs |
|
|
|
def test_text_to_video_default_case(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
pipe = self.pipeline_class(**components) |
|
pipe = pipe.to(device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
inputs["output_type"] = "np" |
|
frames = pipe(**inputs).frames |
|
|
|
image_slice = frames[0][0][-3:, -3:, -1] |
|
|
|
assert frames[0][0].shape == (32, 32, 3) |
|
expected_slice = np.array([0.5146, 0.6525, 0.6032, 0.5204, 0.5675, 0.4125, 0.3016, 0.5172, 0.4095]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
def test_save_load_local(self): |
|
super().test_save_load_local(expected_max_difference=0.006) |
|
|
|
def test_sequential_cpu_offload_forward_pass(self): |
|
super().test_sequential_cpu_offload_forward_pass(expected_max_diff=0.008) |
|
|
|
def test_dict_tuple_outputs_equivalent(self): |
|
super().test_dict_tuple_outputs_equivalent(expected_max_difference=0.008) |
|
|
|
def test_save_load_optional_components(self): |
|
super().test_save_load_optional_components(expected_max_difference=0.008) |
|
|
|
@unittest.skip("Deprecated functionality") |
|
def test_attention_slicing_forward_pass(self): |
|
pass |
|
|
|
@unittest.skipIf( |
|
torch_device != "cuda" or not is_xformers_available(), |
|
reason="XFormers attention is only available with CUDA and `xformers` installed", |
|
) |
|
def test_xformers_attention_forwardGenerator_pass(self): |
|
self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=False, expected_max_diff=1e-2) |
|
|
|
def test_inference_batch_single_identical(self): |
|
super().test_inference_batch_single_identical(batch_size=2, expected_max_diff=0.008) |
|
|
|
def test_model_cpu_offload_forward_pass(self): |
|
super().test_model_cpu_offload_forward_pass(expected_max_diff=0.008) |
|
|
|
def test_num_videos_per_prompt(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
pipe = self.pipeline_class(**components) |
|
pipe = pipe.to(device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
inputs["output_type"] = "np" |
|
frames = pipe(**inputs, num_videos_per_prompt=2).frames |
|
|
|
assert frames.shape == (2, 4, 32, 32, 3) |
|
assert frames[0][0].shape == (32, 32, 3) |
|
|
|
image_slice = frames[0][0][-3:, -3:, -1] |
|
expected_slice = np.array([0.5146, 0.6525, 0.6032, 0.5204, 0.5675, 0.4125, 0.3016, 0.5172, 0.4095]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
|
|
@slow |
|
@require_torch_gpu |
|
class I2VGenXLPipelineSlowTests(unittest.TestCase): |
|
def setUp(self): |
|
|
|
super().setUp() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def tearDown(self): |
|
|
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def test_i2vgen_xl(self): |
|
pipe = I2VGenXLPipeline.from_pretrained("ali-vilab/i2vgen-xl", torch_dtype=torch.float16, variant="fp16") |
|
pipe.enable_model_cpu_offload() |
|
pipe.set_progress_bar_config(disable=None) |
|
image = load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/pix2pix/cat_6.png?download=true" |
|
) |
|
|
|
generator = torch.Generator("cpu").manual_seed(0) |
|
num_frames = 3 |
|
|
|
output = pipe( |
|
image=image, |
|
prompt="my cat", |
|
num_frames=num_frames, |
|
generator=generator, |
|
num_inference_steps=3, |
|
output_type="np", |
|
) |
|
|
|
image = output.frames[0] |
|
assert image.shape == (num_frames, 704, 1280, 3) |
|
|
|
image_slice = image[0, -3:, -3:, -1] |
|
print_tensor_test(image_slice.flatten()) |
|
expected_slice = np.array([0.5482, 0.6244, 0.6274, 0.4584, 0.5935, 0.5937, 0.4579, 0.5767, 0.5892]) |
|
assert numpy_cosine_similarity_distance(image_slice.flatten(), expected_slice.flatten()) < 1e-3 |
|
|