|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import copy |
|
import gc |
|
import unittest |
|
|
|
import numpy as np |
|
import torch |
|
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer |
|
|
|
from diffusers import ( |
|
AutoencoderKL, |
|
ControlNetModel, |
|
EulerDiscreteScheduler, |
|
HeunDiscreteScheduler, |
|
LCMScheduler, |
|
StableDiffusionXLControlNetPipeline, |
|
StableDiffusionXLImg2ImgPipeline, |
|
UNet2DConditionModel, |
|
) |
|
from diffusers.models.unets.unet_2d_blocks import UNetMidBlock2D |
|
from diffusers.pipelines.controlnet.pipeline_controlnet import MultiControlNetModel |
|
from diffusers.utils.import_utils import is_xformers_available |
|
from diffusers.utils.testing_utils import ( |
|
enable_full_determinism, |
|
load_image, |
|
require_torch_gpu, |
|
slow, |
|
torch_device, |
|
) |
|
from diffusers.utils.torch_utils import randn_tensor |
|
|
|
from ..pipeline_params import ( |
|
IMAGE_TO_IMAGE_IMAGE_PARAMS, |
|
TEXT_TO_IMAGE_BATCH_PARAMS, |
|
TEXT_TO_IMAGE_IMAGE_PARAMS, |
|
TEXT_TO_IMAGE_PARAMS, |
|
) |
|
from ..test_pipelines_common import ( |
|
IPAdapterTesterMixin, |
|
PipelineKarrasSchedulerTesterMixin, |
|
PipelineLatentTesterMixin, |
|
PipelineTesterMixin, |
|
SDXLOptionalComponentsTesterMixin, |
|
) |
|
|
|
|
|
enable_full_determinism() |
|
|
|
|
|
class StableDiffusionXLControlNetPipelineFastTests( |
|
IPAdapterTesterMixin, |
|
PipelineLatentTesterMixin, |
|
PipelineKarrasSchedulerTesterMixin, |
|
PipelineTesterMixin, |
|
SDXLOptionalComponentsTesterMixin, |
|
unittest.TestCase, |
|
): |
|
pipeline_class = StableDiffusionXLControlNetPipeline |
|
params = TEXT_TO_IMAGE_PARAMS |
|
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS |
|
image_params = IMAGE_TO_IMAGE_IMAGE_PARAMS |
|
image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS |
|
|
|
def get_dummy_components(self, time_cond_proj_dim=None): |
|
torch.manual_seed(0) |
|
unet = UNet2DConditionModel( |
|
block_out_channels=(32, 64), |
|
layers_per_block=2, |
|
sample_size=32, |
|
in_channels=4, |
|
out_channels=4, |
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), |
|
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), |
|
|
|
attention_head_dim=(2, 4), |
|
use_linear_projection=True, |
|
addition_embed_type="text_time", |
|
addition_time_embed_dim=8, |
|
transformer_layers_per_block=(1, 2), |
|
projection_class_embeddings_input_dim=80, |
|
cross_attention_dim=64, |
|
time_cond_proj_dim=time_cond_proj_dim, |
|
) |
|
torch.manual_seed(0) |
|
controlnet = ControlNetModel( |
|
block_out_channels=(32, 64), |
|
layers_per_block=2, |
|
in_channels=4, |
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), |
|
conditioning_embedding_out_channels=(16, 32), |
|
|
|
attention_head_dim=(2, 4), |
|
use_linear_projection=True, |
|
addition_embed_type="text_time", |
|
addition_time_embed_dim=8, |
|
transformer_layers_per_block=(1, 2), |
|
projection_class_embeddings_input_dim=80, |
|
cross_attention_dim=64, |
|
) |
|
torch.manual_seed(0) |
|
scheduler = EulerDiscreteScheduler( |
|
beta_start=0.00085, |
|
beta_end=0.012, |
|
steps_offset=1, |
|
beta_schedule="scaled_linear", |
|
timestep_spacing="leading", |
|
) |
|
torch.manual_seed(0) |
|
vae = AutoencoderKL( |
|
block_out_channels=[32, 64], |
|
in_channels=3, |
|
out_channels=3, |
|
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], |
|
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], |
|
latent_channels=4, |
|
) |
|
torch.manual_seed(0) |
|
text_encoder_config = CLIPTextConfig( |
|
bos_token_id=0, |
|
eos_token_id=2, |
|
hidden_size=32, |
|
intermediate_size=37, |
|
layer_norm_eps=1e-05, |
|
num_attention_heads=4, |
|
num_hidden_layers=5, |
|
pad_token_id=1, |
|
vocab_size=1000, |
|
|
|
hidden_act="gelu", |
|
projection_dim=32, |
|
) |
|
text_encoder = CLIPTextModel(text_encoder_config) |
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
|
|
text_encoder_2 = CLIPTextModelWithProjection(text_encoder_config) |
|
tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
|
|
components = { |
|
"unet": unet, |
|
"controlnet": controlnet, |
|
"scheduler": scheduler, |
|
"vae": vae, |
|
"text_encoder": text_encoder, |
|
"tokenizer": tokenizer, |
|
"text_encoder_2": text_encoder_2, |
|
"tokenizer_2": tokenizer_2, |
|
"feature_extractor": None, |
|
"image_encoder": None, |
|
} |
|
return components |
|
|
|
def get_dummy_inputs(self, device, seed=0): |
|
if str(device).startswith("mps"): |
|
generator = torch.manual_seed(seed) |
|
else: |
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
|
|
controlnet_embedder_scale_factor = 2 |
|
image = randn_tensor( |
|
(1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor), |
|
generator=generator, |
|
device=torch.device(device), |
|
) |
|
|
|
inputs = { |
|
"prompt": "A painting of a squirrel eating a burger", |
|
"generator": generator, |
|
"num_inference_steps": 2, |
|
"guidance_scale": 6.0, |
|
"output_type": "np", |
|
"image": image, |
|
} |
|
|
|
return inputs |
|
|
|
def test_attention_slicing_forward_pass(self): |
|
return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3) |
|
|
|
def test_ip_adapter_single(self, from_ssd1b=False, expected_pipe_slice=None): |
|
if not from_ssd1b: |
|
expected_pipe_slice = None |
|
if torch_device == "cpu": |
|
expected_pipe_slice = np.array( |
|
[0.7331, 0.5907, 0.5667, 0.6029, 0.5679, 0.5968, 0.4033, 0.4761, 0.5090] |
|
) |
|
return super().test_ip_adapter_single(expected_pipe_slice=expected_pipe_slice) |
|
|
|
@unittest.skipIf( |
|
torch_device != "cuda" or not is_xformers_available(), |
|
reason="XFormers attention is only available with CUDA and `xformers` installed", |
|
) |
|
def test_xformers_attention_forwardGenerator_pass(self): |
|
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3) |
|
|
|
def test_inference_batch_single_identical(self): |
|
self._test_inference_batch_single_identical(expected_max_diff=2e-3) |
|
|
|
def test_save_load_optional_components(self): |
|
self._test_save_load_optional_components() |
|
|
|
@require_torch_gpu |
|
def test_stable_diffusion_xl_offloads(self): |
|
pipes = [] |
|
components = self.get_dummy_components() |
|
sd_pipe = self.pipeline_class(**components).to(torch_device) |
|
pipes.append(sd_pipe) |
|
|
|
components = self.get_dummy_components() |
|
sd_pipe = self.pipeline_class(**components) |
|
sd_pipe.enable_model_cpu_offload() |
|
pipes.append(sd_pipe) |
|
|
|
components = self.get_dummy_components() |
|
sd_pipe = self.pipeline_class(**components) |
|
sd_pipe.enable_sequential_cpu_offload() |
|
pipes.append(sd_pipe) |
|
|
|
image_slices = [] |
|
for pipe in pipes: |
|
pipe.unet.set_default_attn_processor() |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
image = pipe(**inputs).images |
|
|
|
image_slices.append(image[0, -3:, -3:, -1].flatten()) |
|
|
|
assert np.abs(image_slices[0] - image_slices[1]).max() < 1e-3 |
|
assert np.abs(image_slices[0] - image_slices[2]).max() < 1e-3 |
|
|
|
def test_stable_diffusion_xl_multi_prompts(self): |
|
components = self.get_dummy_components() |
|
sd_pipe = self.pipeline_class(**components).to(torch_device) |
|
|
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
output = sd_pipe(**inputs) |
|
image_slice_1 = output.images[0, -3:, -3:, -1] |
|
|
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
inputs["prompt_2"] = inputs["prompt"] |
|
output = sd_pipe(**inputs) |
|
image_slice_2 = output.images[0, -3:, -3:, -1] |
|
|
|
|
|
assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4 |
|
|
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
inputs["prompt_2"] = "different prompt" |
|
output = sd_pipe(**inputs) |
|
image_slice_3 = output.images[0, -3:, -3:, -1] |
|
|
|
|
|
assert np.abs(image_slice_1.flatten() - image_slice_3.flatten()).max() > 1e-4 |
|
|
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
inputs["negative_prompt"] = "negative prompt" |
|
output = sd_pipe(**inputs) |
|
image_slice_1 = output.images[0, -3:, -3:, -1] |
|
|
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
inputs["negative_prompt"] = "negative prompt" |
|
inputs["negative_prompt_2"] = inputs["negative_prompt"] |
|
output = sd_pipe(**inputs) |
|
image_slice_2 = output.images[0, -3:, -3:, -1] |
|
|
|
|
|
assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4 |
|
|
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
inputs["negative_prompt"] = "negative prompt" |
|
inputs["negative_prompt_2"] = "different negative prompt" |
|
output = sd_pipe(**inputs) |
|
image_slice_3 = output.images[0, -3:, -3:, -1] |
|
|
|
|
|
assert np.abs(image_slice_1.flatten() - image_slice_3.flatten()).max() > 1e-4 |
|
|
|
|
|
def test_stable_diffusion_xl_prompt_embeds(self): |
|
components = self.get_dummy_components() |
|
sd_pipe = self.pipeline_class(**components) |
|
sd_pipe = sd_pipe.to(torch_device) |
|
sd_pipe = sd_pipe.to(torch_device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
inputs["prompt"] = 2 * [inputs["prompt"]] |
|
inputs["num_images_per_prompt"] = 2 |
|
|
|
output = sd_pipe(**inputs) |
|
image_slice_1 = output.images[0, -3:, -3:, -1] |
|
|
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
prompt = 2 * [inputs.pop("prompt")] |
|
|
|
( |
|
prompt_embeds, |
|
negative_prompt_embeds, |
|
pooled_prompt_embeds, |
|
negative_pooled_prompt_embeds, |
|
) = sd_pipe.encode_prompt(prompt) |
|
|
|
output = sd_pipe( |
|
**inputs, |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
pooled_prompt_embeds=pooled_prompt_embeds, |
|
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, |
|
) |
|
image_slice_2 = output.images[0, -3:, -3:, -1] |
|
|
|
|
|
assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4 |
|
|
|
def test_controlnet_sdxl_guess(self): |
|
device = "cpu" |
|
|
|
components = self.get_dummy_components() |
|
|
|
sd_pipe = self.pipeline_class(**components) |
|
sd_pipe = sd_pipe.to(device) |
|
|
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
inputs["guess_mode"] = True |
|
|
|
output = sd_pipe(**inputs) |
|
image_slice = output.images[0, -3:, -3:, -1] |
|
expected_slice = np.array( |
|
[0.7330834, 0.590667, 0.5667336, 0.6029023, 0.5679491, 0.5968194, 0.4032986, 0.47612396, 0.5089609] |
|
) |
|
|
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-4 |
|
|
|
def test_controlnet_sdxl_lcm(self): |
|
device = "cpu" |
|
|
|
components = self.get_dummy_components(time_cond_proj_dim=256) |
|
sd_pipe = StableDiffusionXLControlNetPipeline(**components) |
|
sd_pipe.scheduler = LCMScheduler.from_config(sd_pipe.scheduler.config) |
|
sd_pipe = sd_pipe.to(torch_device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
output = sd_pipe(**inputs) |
|
image = output.images |
|
|
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 64, 64, 3) |
|
expected_slice = np.array([0.7799, 0.614, 0.6162, 0.7082, 0.6662, 0.5833, 0.4148, 0.5182, 0.4866]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
|
|
|
|
def test_controlnet_sdxl_two_mixture_of_denoiser_fast(self): |
|
components = self.get_dummy_components() |
|
pipe_1 = StableDiffusionXLControlNetPipeline(**components).to(torch_device) |
|
pipe_1.unet.set_default_attn_processor() |
|
|
|
components_without_controlnet = {k: v for k, v in components.items() if k != "controlnet"} |
|
pipe_2 = StableDiffusionXLImg2ImgPipeline(**components_without_controlnet).to(torch_device) |
|
pipe_2.unet.set_default_attn_processor() |
|
|
|
def assert_run_mixture( |
|
num_steps, |
|
split, |
|
scheduler_cls_orig, |
|
expected_tss, |
|
num_train_timesteps=pipe_1.scheduler.config.num_train_timesteps, |
|
): |
|
inputs = self.get_dummy_inputs(torch_device) |
|
inputs["num_inference_steps"] = num_steps |
|
|
|
class scheduler_cls(scheduler_cls_orig): |
|
pass |
|
|
|
pipe_1.scheduler = scheduler_cls.from_config(pipe_1.scheduler.config) |
|
pipe_2.scheduler = scheduler_cls.from_config(pipe_2.scheduler.config) |
|
|
|
|
|
pipe_1.scheduler.set_timesteps(num_steps) |
|
expected_steps = pipe_1.scheduler.timesteps.tolist() |
|
|
|
if pipe_1.scheduler.order == 2: |
|
expected_steps_1 = list(filter(lambda ts: ts >= split, expected_tss)) |
|
expected_steps_2 = expected_steps_1[-1:] + list(filter(lambda ts: ts < split, expected_tss)) |
|
expected_steps = expected_steps_1 + expected_steps_2 |
|
else: |
|
expected_steps_1 = list(filter(lambda ts: ts >= split, expected_tss)) |
|
expected_steps_2 = list(filter(lambda ts: ts < split, expected_tss)) |
|
|
|
|
|
|
|
done_steps = [] |
|
old_step = copy.copy(scheduler_cls.step) |
|
|
|
def new_step(self, *args, **kwargs): |
|
done_steps.append(args[1].cpu().item()) |
|
return old_step(self, *args, **kwargs) |
|
|
|
scheduler_cls.step = new_step |
|
|
|
inputs_1 = { |
|
**inputs, |
|
**{ |
|
"denoising_end": 1.0 - (split / num_train_timesteps), |
|
"output_type": "latent", |
|
}, |
|
} |
|
latents = pipe_1(**inputs_1).images[0] |
|
|
|
assert expected_steps_1 == done_steps, f"Failure with {scheduler_cls.__name__} and {num_steps} and {split}" |
|
|
|
inputs_2 = { |
|
**inputs, |
|
**{ |
|
"denoising_start": 1.0 - (split / num_train_timesteps), |
|
"image": latents, |
|
}, |
|
} |
|
pipe_2(**inputs_2).images[0] |
|
|
|
assert expected_steps_2 == done_steps[len(expected_steps_1) :] |
|
assert expected_steps == done_steps, f"Failure with {scheduler_cls.__name__} and {num_steps} and {split}" |
|
|
|
steps = 10 |
|
for split in [300, 700]: |
|
for scheduler_cls_timesteps in [ |
|
(EulerDiscreteScheduler, [901, 801, 701, 601, 501, 401, 301, 201, 101, 1]), |
|
( |
|
HeunDiscreteScheduler, |
|
[ |
|
901.0, |
|
801.0, |
|
801.0, |
|
701.0, |
|
701.0, |
|
601.0, |
|
601.0, |
|
501.0, |
|
501.0, |
|
401.0, |
|
401.0, |
|
301.0, |
|
301.0, |
|
201.0, |
|
201.0, |
|
101.0, |
|
101.0, |
|
1.0, |
|
1.0, |
|
], |
|
), |
|
]: |
|
assert_run_mixture(steps, split, scheduler_cls_timesteps[0], scheduler_cls_timesteps[1]) |
|
|
|
|
|
class StableDiffusionXLMultiControlNetPipelineFastTests( |
|
PipelineTesterMixin, PipelineKarrasSchedulerTesterMixin, SDXLOptionalComponentsTesterMixin, unittest.TestCase |
|
): |
|
pipeline_class = StableDiffusionXLControlNetPipeline |
|
params = TEXT_TO_IMAGE_PARAMS |
|
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS |
|
image_params = frozenset([]) |
|
|
|
def get_dummy_components(self): |
|
torch.manual_seed(0) |
|
unet = UNet2DConditionModel( |
|
block_out_channels=(32, 64), |
|
layers_per_block=2, |
|
sample_size=32, |
|
in_channels=4, |
|
out_channels=4, |
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), |
|
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), |
|
|
|
attention_head_dim=(2, 4), |
|
use_linear_projection=True, |
|
addition_embed_type="text_time", |
|
addition_time_embed_dim=8, |
|
transformer_layers_per_block=(1, 2), |
|
projection_class_embeddings_input_dim=80, |
|
cross_attention_dim=64, |
|
) |
|
torch.manual_seed(0) |
|
|
|
def init_weights(m): |
|
if isinstance(m, torch.nn.Conv2d): |
|
torch.nn.init.normal_(m.weight) |
|
m.bias.data.fill_(1.0) |
|
|
|
controlnet1 = ControlNetModel( |
|
block_out_channels=(32, 64), |
|
layers_per_block=2, |
|
in_channels=4, |
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), |
|
conditioning_embedding_out_channels=(16, 32), |
|
|
|
attention_head_dim=(2, 4), |
|
use_linear_projection=True, |
|
addition_embed_type="text_time", |
|
addition_time_embed_dim=8, |
|
transformer_layers_per_block=(1, 2), |
|
projection_class_embeddings_input_dim=80, |
|
cross_attention_dim=64, |
|
) |
|
controlnet1.controlnet_down_blocks.apply(init_weights) |
|
|
|
torch.manual_seed(0) |
|
controlnet2 = ControlNetModel( |
|
block_out_channels=(32, 64), |
|
layers_per_block=2, |
|
in_channels=4, |
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), |
|
conditioning_embedding_out_channels=(16, 32), |
|
|
|
attention_head_dim=(2, 4), |
|
use_linear_projection=True, |
|
addition_embed_type="text_time", |
|
addition_time_embed_dim=8, |
|
transformer_layers_per_block=(1, 2), |
|
projection_class_embeddings_input_dim=80, |
|
cross_attention_dim=64, |
|
) |
|
controlnet2.controlnet_down_blocks.apply(init_weights) |
|
|
|
torch.manual_seed(0) |
|
scheduler = EulerDiscreteScheduler( |
|
beta_start=0.00085, |
|
beta_end=0.012, |
|
steps_offset=1, |
|
beta_schedule="scaled_linear", |
|
timestep_spacing="leading", |
|
) |
|
torch.manual_seed(0) |
|
vae = AutoencoderKL( |
|
block_out_channels=[32, 64], |
|
in_channels=3, |
|
out_channels=3, |
|
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], |
|
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], |
|
latent_channels=4, |
|
) |
|
torch.manual_seed(0) |
|
text_encoder_config = CLIPTextConfig( |
|
bos_token_id=0, |
|
eos_token_id=2, |
|
hidden_size=32, |
|
intermediate_size=37, |
|
layer_norm_eps=1e-05, |
|
num_attention_heads=4, |
|
num_hidden_layers=5, |
|
pad_token_id=1, |
|
vocab_size=1000, |
|
|
|
hidden_act="gelu", |
|
projection_dim=32, |
|
) |
|
text_encoder = CLIPTextModel(text_encoder_config) |
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
|
|
text_encoder_2 = CLIPTextModelWithProjection(text_encoder_config) |
|
tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
|
|
controlnet = MultiControlNetModel([controlnet1, controlnet2]) |
|
|
|
components = { |
|
"unet": unet, |
|
"controlnet": controlnet, |
|
"scheduler": scheduler, |
|
"vae": vae, |
|
"text_encoder": text_encoder, |
|
"tokenizer": tokenizer, |
|
"text_encoder_2": text_encoder_2, |
|
"tokenizer_2": tokenizer_2, |
|
"feature_extractor": None, |
|
"image_encoder": None, |
|
} |
|
return components |
|
|
|
def get_dummy_inputs(self, device, seed=0): |
|
if str(device).startswith("mps"): |
|
generator = torch.manual_seed(seed) |
|
else: |
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
|
|
controlnet_embedder_scale_factor = 2 |
|
|
|
images = [ |
|
randn_tensor( |
|
(1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor), |
|
generator=generator, |
|
device=torch.device(device), |
|
), |
|
randn_tensor( |
|
(1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor), |
|
generator=generator, |
|
device=torch.device(device), |
|
), |
|
] |
|
|
|
inputs = { |
|
"prompt": "A painting of a squirrel eating a burger", |
|
"generator": generator, |
|
"num_inference_steps": 2, |
|
"guidance_scale": 6.0, |
|
"output_type": "np", |
|
"image": images, |
|
} |
|
|
|
return inputs |
|
|
|
def test_control_guidance_switch(self): |
|
components = self.get_dummy_components() |
|
pipe = self.pipeline_class(**components) |
|
pipe.to(torch_device) |
|
|
|
scale = 10.0 |
|
steps = 4 |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
inputs["num_inference_steps"] = steps |
|
inputs["controlnet_conditioning_scale"] = scale |
|
output_1 = pipe(**inputs)[0] |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
inputs["num_inference_steps"] = steps |
|
inputs["controlnet_conditioning_scale"] = scale |
|
output_2 = pipe(**inputs, control_guidance_start=0.1, control_guidance_end=0.2)[0] |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
inputs["num_inference_steps"] = steps |
|
inputs["controlnet_conditioning_scale"] = scale |
|
output_3 = pipe(**inputs, control_guidance_start=[0.1, 0.3], control_guidance_end=[0.2, 0.7])[0] |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
inputs["num_inference_steps"] = steps |
|
inputs["controlnet_conditioning_scale"] = scale |
|
output_4 = pipe(**inputs, control_guidance_start=0.4, control_guidance_end=[0.5, 0.8])[0] |
|
|
|
|
|
assert np.sum(np.abs(output_1 - output_2)) > 1e-3 |
|
assert np.sum(np.abs(output_1 - output_3)) > 1e-3 |
|
assert np.sum(np.abs(output_1 - output_4)) > 1e-3 |
|
|
|
def test_attention_slicing_forward_pass(self): |
|
return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3) |
|
|
|
@unittest.skipIf( |
|
torch_device != "cuda" or not is_xformers_available(), |
|
reason="XFormers attention is only available with CUDA and `xformers` installed", |
|
) |
|
def test_xformers_attention_forwardGenerator_pass(self): |
|
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3) |
|
|
|
def test_inference_batch_single_identical(self): |
|
self._test_inference_batch_single_identical(expected_max_diff=2e-3) |
|
|
|
def test_save_load_optional_components(self): |
|
return self._test_save_load_optional_components() |
|
|
|
|
|
class StableDiffusionXLMultiControlNetOneModelPipelineFastTests( |
|
PipelineKarrasSchedulerTesterMixin, PipelineTesterMixin, SDXLOptionalComponentsTesterMixin, unittest.TestCase |
|
): |
|
pipeline_class = StableDiffusionXLControlNetPipeline |
|
params = TEXT_TO_IMAGE_PARAMS |
|
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS |
|
image_params = frozenset([]) |
|
|
|
def get_dummy_components(self): |
|
torch.manual_seed(0) |
|
unet = UNet2DConditionModel( |
|
block_out_channels=(32, 64), |
|
layers_per_block=2, |
|
sample_size=32, |
|
in_channels=4, |
|
out_channels=4, |
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), |
|
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), |
|
|
|
attention_head_dim=(2, 4), |
|
use_linear_projection=True, |
|
addition_embed_type="text_time", |
|
addition_time_embed_dim=8, |
|
transformer_layers_per_block=(1, 2), |
|
projection_class_embeddings_input_dim=80, |
|
cross_attention_dim=64, |
|
) |
|
torch.manual_seed(0) |
|
|
|
def init_weights(m): |
|
if isinstance(m, torch.nn.Conv2d): |
|
torch.nn.init.normal_(m.weight) |
|
m.bias.data.fill_(1.0) |
|
|
|
controlnet = ControlNetModel( |
|
block_out_channels=(32, 64), |
|
layers_per_block=2, |
|
in_channels=4, |
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), |
|
conditioning_embedding_out_channels=(16, 32), |
|
|
|
attention_head_dim=(2, 4), |
|
use_linear_projection=True, |
|
addition_embed_type="text_time", |
|
addition_time_embed_dim=8, |
|
transformer_layers_per_block=(1, 2), |
|
projection_class_embeddings_input_dim=80, |
|
cross_attention_dim=64, |
|
) |
|
controlnet.controlnet_down_blocks.apply(init_weights) |
|
|
|
torch.manual_seed(0) |
|
scheduler = EulerDiscreteScheduler( |
|
beta_start=0.00085, |
|
beta_end=0.012, |
|
steps_offset=1, |
|
beta_schedule="scaled_linear", |
|
timestep_spacing="leading", |
|
) |
|
torch.manual_seed(0) |
|
vae = AutoencoderKL( |
|
block_out_channels=[32, 64], |
|
in_channels=3, |
|
out_channels=3, |
|
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], |
|
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], |
|
latent_channels=4, |
|
) |
|
torch.manual_seed(0) |
|
text_encoder_config = CLIPTextConfig( |
|
bos_token_id=0, |
|
eos_token_id=2, |
|
hidden_size=32, |
|
intermediate_size=37, |
|
layer_norm_eps=1e-05, |
|
num_attention_heads=4, |
|
num_hidden_layers=5, |
|
pad_token_id=1, |
|
vocab_size=1000, |
|
|
|
hidden_act="gelu", |
|
projection_dim=32, |
|
) |
|
text_encoder = CLIPTextModel(text_encoder_config) |
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
|
|
text_encoder_2 = CLIPTextModelWithProjection(text_encoder_config) |
|
tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
|
|
controlnet = MultiControlNetModel([controlnet]) |
|
|
|
components = { |
|
"unet": unet, |
|
"controlnet": controlnet, |
|
"scheduler": scheduler, |
|
"vae": vae, |
|
"text_encoder": text_encoder, |
|
"tokenizer": tokenizer, |
|
"text_encoder_2": text_encoder_2, |
|
"tokenizer_2": tokenizer_2, |
|
"feature_extractor": None, |
|
"image_encoder": None, |
|
} |
|
return components |
|
|
|
def get_dummy_inputs(self, device, seed=0): |
|
if str(device).startswith("mps"): |
|
generator = torch.manual_seed(seed) |
|
else: |
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
|
|
controlnet_embedder_scale_factor = 2 |
|
images = [ |
|
randn_tensor( |
|
(1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor), |
|
generator=generator, |
|
device=torch.device(device), |
|
), |
|
] |
|
|
|
inputs = { |
|
"prompt": "A painting of a squirrel eating a burger", |
|
"generator": generator, |
|
"num_inference_steps": 2, |
|
"guidance_scale": 6.0, |
|
"output_type": "np", |
|
"image": images, |
|
} |
|
|
|
return inputs |
|
|
|
def test_control_guidance_switch(self): |
|
components = self.get_dummy_components() |
|
pipe = self.pipeline_class(**components) |
|
pipe.to(torch_device) |
|
|
|
scale = 10.0 |
|
steps = 4 |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
inputs["num_inference_steps"] = steps |
|
inputs["controlnet_conditioning_scale"] = scale |
|
output_1 = pipe(**inputs)[0] |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
inputs["num_inference_steps"] = steps |
|
inputs["controlnet_conditioning_scale"] = scale |
|
output_2 = pipe(**inputs, control_guidance_start=0.1, control_guidance_end=0.2)[0] |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
inputs["num_inference_steps"] = steps |
|
inputs["controlnet_conditioning_scale"] = scale |
|
output_3 = pipe( |
|
**inputs, |
|
control_guidance_start=[0.1], |
|
control_guidance_end=[0.2], |
|
)[0] |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
inputs["num_inference_steps"] = steps |
|
inputs["controlnet_conditioning_scale"] = scale |
|
output_4 = pipe(**inputs, control_guidance_start=0.4, control_guidance_end=[0.5])[0] |
|
|
|
|
|
assert np.sum(np.abs(output_1 - output_2)) > 1e-3 |
|
assert np.sum(np.abs(output_1 - output_3)) > 1e-3 |
|
assert np.sum(np.abs(output_1 - output_4)) > 1e-3 |
|
|
|
def test_attention_slicing_forward_pass(self): |
|
return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3) |
|
|
|
@unittest.skipIf( |
|
torch_device != "cuda" or not is_xformers_available(), |
|
reason="XFormers attention is only available with CUDA and `xformers` installed", |
|
) |
|
def test_xformers_attention_forwardGenerator_pass(self): |
|
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3) |
|
|
|
def test_inference_batch_single_identical(self): |
|
self._test_inference_batch_single_identical(expected_max_diff=2e-3) |
|
|
|
def test_save_load_optional_components(self): |
|
self._test_save_load_optional_components() |
|
|
|
def test_negative_conditions(self): |
|
components = self.get_dummy_components() |
|
pipe = self.pipeline_class(**components) |
|
pipe.to(torch_device) |
|
|
|
inputs = self.get_dummy_inputs(torch_device) |
|
image = pipe(**inputs).images |
|
image_slice_without_neg_cond = image[0, -3:, -3:, -1] |
|
|
|
image = pipe( |
|
**inputs, |
|
negative_original_size=(512, 512), |
|
negative_crops_coords_top_left=(0, 0), |
|
negative_target_size=(1024, 1024), |
|
).images |
|
image_slice_with_neg_cond = image[0, -3:, -3:, -1] |
|
|
|
self.assertTrue(np.abs(image_slice_without_neg_cond - image_slice_with_neg_cond).max() > 1e-2) |
|
|
|
|
|
@slow |
|
@require_torch_gpu |
|
class ControlNetSDXLPipelineSlowTests(unittest.TestCase): |
|
def setUp(self): |
|
super().setUp() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def tearDown(self): |
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def test_canny(self): |
|
controlnet = ControlNetModel.from_pretrained("diffusers/controlnet-canny-sdxl-1.0") |
|
|
|
pipe = StableDiffusionXLControlNetPipeline.from_pretrained( |
|
"stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet |
|
) |
|
pipe.enable_sequential_cpu_offload() |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
generator = torch.Generator(device="cpu").manual_seed(0) |
|
prompt = "bird" |
|
image = load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png" |
|
) |
|
|
|
images = pipe(prompt, image=image, generator=generator, output_type="np", num_inference_steps=3).images |
|
|
|
assert images[0].shape == (768, 512, 3) |
|
|
|
original_image = images[0, -3:, -3:, -1].flatten() |
|
expected_image = np.array([0.4185, 0.4127, 0.4089, 0.4046, 0.4115, 0.4096, 0.4081, 0.4112, 0.3913]) |
|
assert np.allclose(original_image, expected_image, atol=1e-04) |
|
|
|
def test_depth(self): |
|
controlnet = ControlNetModel.from_pretrained("diffusers/controlnet-depth-sdxl-1.0") |
|
|
|
pipe = StableDiffusionXLControlNetPipeline.from_pretrained( |
|
"stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet |
|
) |
|
pipe.enable_sequential_cpu_offload() |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
generator = torch.Generator(device="cpu").manual_seed(0) |
|
prompt = "Stormtrooper's lecture" |
|
image = load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/stormtrooper_depth.png" |
|
) |
|
|
|
images = pipe(prompt, image=image, generator=generator, output_type="np", num_inference_steps=3).images |
|
|
|
assert images[0].shape == (512, 512, 3) |
|
|
|
original_image = images[0, -3:, -3:, -1].flatten() |
|
expected_image = np.array([0.4399, 0.5112, 0.5478, 0.4314, 0.472, 0.4823, 0.4647, 0.4957, 0.4853]) |
|
assert np.allclose(original_image, expected_image, atol=1e-04) |
|
|
|
|
|
class StableDiffusionSSD1BControlNetPipelineFastTests(StableDiffusionXLControlNetPipelineFastTests): |
|
def test_controlnet_sdxl_guess(self): |
|
device = "cpu" |
|
|
|
components = self.get_dummy_components() |
|
|
|
sd_pipe = self.pipeline_class(**components) |
|
sd_pipe = sd_pipe.to(device) |
|
|
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
inputs["guess_mode"] = True |
|
|
|
output = sd_pipe(**inputs) |
|
image_slice = output.images[0, -3:, -3:, -1] |
|
expected_slice = np.array( |
|
[0.6831671, 0.5702532, 0.5459845, 0.6299793, 0.58563006, 0.6033695, 0.4493941, 0.46132287, 0.5035841] |
|
) |
|
|
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-4 |
|
|
|
def test_ip_adapter_single(self): |
|
expected_pipe_slice = None |
|
if torch_device == "cpu": |
|
expected_pipe_slice = np.array([0.6832, 0.5703, 0.5460, 0.6300, 0.5856, 0.6034, 0.4494, 0.4613, 0.5036]) |
|
return super().test_ip_adapter_single(from_ssd1b=True, expected_pipe_slice=expected_pipe_slice) |
|
|
|
def test_controlnet_sdxl_lcm(self): |
|
device = "cpu" |
|
|
|
components = self.get_dummy_components(time_cond_proj_dim=256) |
|
sd_pipe = StableDiffusionXLControlNetPipeline(**components) |
|
sd_pipe.scheduler = LCMScheduler.from_config(sd_pipe.scheduler.config) |
|
sd_pipe = sd_pipe.to(torch_device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
output = sd_pipe(**inputs) |
|
image = output.images |
|
|
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 64, 64, 3) |
|
expected_slice = np.array([0.6850, 0.5135, 0.5545, 0.7033, 0.6617, 0.5971, 0.4165, 0.5480, 0.5070]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
def test_conditioning_channels(self): |
|
unet = UNet2DConditionModel( |
|
block_out_channels=(32, 64), |
|
layers_per_block=2, |
|
sample_size=32, |
|
in_channels=4, |
|
out_channels=4, |
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), |
|
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), |
|
mid_block_type="UNetMidBlock2D", |
|
|
|
attention_head_dim=(2, 4), |
|
use_linear_projection=True, |
|
addition_embed_type="text_time", |
|
addition_time_embed_dim=8, |
|
transformer_layers_per_block=(1, 2), |
|
projection_class_embeddings_input_dim=80, |
|
cross_attention_dim=64, |
|
time_cond_proj_dim=None, |
|
) |
|
|
|
controlnet = ControlNetModel.from_unet(unet, conditioning_channels=4) |
|
assert type(controlnet.mid_block) == UNetMidBlock2D |
|
assert controlnet.conditioning_channels == 4 |
|
|
|
def get_dummy_components(self, time_cond_proj_dim=None): |
|
torch.manual_seed(0) |
|
unet = UNet2DConditionModel( |
|
block_out_channels=(32, 64), |
|
layers_per_block=2, |
|
sample_size=32, |
|
in_channels=4, |
|
out_channels=4, |
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), |
|
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), |
|
mid_block_type="UNetMidBlock2D", |
|
|
|
attention_head_dim=(2, 4), |
|
use_linear_projection=True, |
|
addition_embed_type="text_time", |
|
addition_time_embed_dim=8, |
|
transformer_layers_per_block=(1, 2), |
|
projection_class_embeddings_input_dim=80, |
|
cross_attention_dim=64, |
|
time_cond_proj_dim=time_cond_proj_dim, |
|
) |
|
torch.manual_seed(0) |
|
controlnet = ControlNetModel( |
|
block_out_channels=(32, 64), |
|
layers_per_block=2, |
|
in_channels=4, |
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), |
|
conditioning_embedding_out_channels=(16, 32), |
|
mid_block_type="UNetMidBlock2D", |
|
|
|
attention_head_dim=(2, 4), |
|
use_linear_projection=True, |
|
addition_embed_type="text_time", |
|
addition_time_embed_dim=8, |
|
transformer_layers_per_block=(1, 2), |
|
projection_class_embeddings_input_dim=80, |
|
cross_attention_dim=64, |
|
) |
|
torch.manual_seed(0) |
|
scheduler = EulerDiscreteScheduler( |
|
beta_start=0.00085, |
|
beta_end=0.012, |
|
steps_offset=1, |
|
beta_schedule="scaled_linear", |
|
timestep_spacing="leading", |
|
) |
|
torch.manual_seed(0) |
|
vae = AutoencoderKL( |
|
block_out_channels=[32, 64], |
|
in_channels=3, |
|
out_channels=3, |
|
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], |
|
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], |
|
latent_channels=4, |
|
) |
|
torch.manual_seed(0) |
|
text_encoder_config = CLIPTextConfig( |
|
bos_token_id=0, |
|
eos_token_id=2, |
|
hidden_size=32, |
|
intermediate_size=37, |
|
layer_norm_eps=1e-05, |
|
num_attention_heads=4, |
|
num_hidden_layers=5, |
|
pad_token_id=1, |
|
vocab_size=1000, |
|
|
|
hidden_act="gelu", |
|
projection_dim=32, |
|
) |
|
text_encoder = CLIPTextModel(text_encoder_config) |
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
|
|
text_encoder_2 = CLIPTextModelWithProjection(text_encoder_config) |
|
tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
|
|
components = { |
|
"unet": unet, |
|
"controlnet": controlnet, |
|
"scheduler": scheduler, |
|
"vae": vae, |
|
"text_encoder": text_encoder, |
|
"tokenizer": tokenizer, |
|
"text_encoder_2": text_encoder_2, |
|
"tokenizer_2": tokenizer_2, |
|
"feature_extractor": None, |
|
"image_encoder": None, |
|
} |
|
return components |
|
|