diffusers-sdxl-controlnet / produce_gif_script.py
svjack's picture
Update produce_gif_script.py
3416f50 verified
'''
!huggingface-cli download \
--repo-type dataset svjack/video-dataset-Lily-Bikini-rm-background-organized \
--local-dir video-dataset-Lily-Bikini-rm-background-organized
import re
def insert_content_in_string(insert_content, character_name, gender=None):
"""
在原始字符串中特定位置插入内容。
:param insert_content: 要插入的内容
:param character_name: 角色名称
:param gender: 性别(可选,可以是 "1boy" 或 "1girl")
:return: 修改后的字符串
"""
# 根据 character_name 和 gender 生成 original_string
original_string = f"solo,{character_name}\(genshin impact\),{gender if gender else '1boy'},highres,"
# 根据 character_name 生成 target_pattern
target_pattern = re.escape(character_name)
# 插入内容
modified_string = re.sub(target_pattern, r'\g<0>' + insert_content, original_string)
return original_string ,modified_string
from datasets import load_dataset
character_name = "Xiangling"
gender = "1girl" # 可选参数
prompt_list = load_dataset("svjack/daily-actions-en-zh")["train"].to_pandas()["en"].map(
lambda x: ", {}".format(x)
).map(
lambda insert_content: insert_content_in_string(insert_content, character_name, gender)[-1]
).dropna().drop_duplicates().values.tolist()
print(len(prompt_list))
import pandas as pd
import pathlib
reference_video_list = pd.Series(
list(pathlib.Path("video-dataset-Lily-Bikini-rm-background-organized").rglob("*.mp4"))
).map(str).values.tolist()
print(len(reference_video_list))
from itertools import product
pd.DataFrame(list(product(*[reference_video_list, prompt_list])))[[1, 0]].rename(
columns = {
1: "prompt",
0: "input_video"
}
).to_csv("xiangling_video_seed.csv", index = False)
!python produce_gif_script.py xiangling_video_seed.csv "svjack/GenshinImpact_XL_Base" xiangling_gif_dir \
--num_frames 16 --temp_folder temp_frames --seed 0 --controlnet_conditioning_scale 0.3
!python Linfusion_upscale_video_folder.py xiangling_mp4 xiangling_mp4_upscaled \
"solo,Xiangling,_genshin_impact_,1girl,highres" --upscale_factor 2 --upscale_strength 0.5
import re
def insert_content_in_string(insert_content, character_name, gender=None):
"""
在原始字符串中特定位置插入内容。
:param insert_content: 要插入的内容
:param character_name: 角色名称
:param gender: 性别(可选,可以是 "1boy" 或 "1girl")
:return: 修改后的字符串
"""
# 根据 character_name 和 gender 生成 original_string
original_string = f"solo,{character_name}\(genshin impact\),{gender if gender else '1boy'},highres,"
original_string = f"{gender if gender else '1boy'},{character_name}, masterpiece, white lab coat, red tie"
# 根据 character_name 生成 target_pattern
target_pattern = re.escape(character_name)
# 插入内容
modified_string = re.sub(target_pattern, r'\g<0>' + insert_content, original_string)
return original_string ,modified_string
from datasets import load_dataset
character_name = "Makise Kurisu"
gender = "1girl" # 可选参数
prompt_list = load_dataset("svjack/daily-actions-en-zh")["train"].to_pandas()["en"].map(
lambda x: ", {}".format(x)
).map(
lambda insert_content: insert_content_in_string(insert_content, character_name, gender)[-1]
).dropna().drop_duplicates().values.tolist()
print(len(prompt_list))
import pandas as pd
import pathlib
reference_video_list = pd.Series(
list(pathlib.Path("video-dataset-Lily-Bikini-rm-background-organized").rglob("*.mp4"))
).map(str).values.tolist()
print(len(reference_video_list))
from itertools import product
pd.DataFrame(list(product(*[reference_video_list, prompt_list])))[[1, 0]].rename(
columns = {
1: "prompt",
0: "input_video"
}
).to_csv("Makise_Kurisu_video_seed.csv", index = False)
!python produce_gif_script.py Makise_Kurisu_video_seed.csv "cagliostrolab/animagine-xl-3.1" Makise_Kurisu_gif_dir \
--num_frames 16 --temp_folder temp_frames --seed 0 --controlnet_conditioning_scale 0.3
!python Linfusion_upscale_video_folder.py Makise_Kurisu_mp4 Makise_Kurisu_mp4_upscaled \
"1girl, Makise Kurisu, masterpiece, white lab coat, red tie, laboratory" --upscale_factor 2 --upscale_strength 0.5
'''
import sys
sys.path.insert(0, "diffusers-sdxl-controlnet/examples/community/")
from animatediff_controlnet_sdxl import *
import argparse
from moviepy.editor import VideoFileClip, ImageSequenceClip
import os
import torch
from diffusers.models import MotionAdapter
from diffusers import DDIMScheduler, AutoPipelineForText2Image, ControlNetModel
from diffusers.utils import export_to_gif
from PIL import Image
from controlnet_aux.processor import Processor
import pandas as pd
import random
from tqdm import tqdm
# 初始化 MotionAdapter 和 ControlNetModel
adapter = MotionAdapter.from_pretrained("a-r-r-o-w/animatediff-motion-adapter-sdxl-beta", torch_dtype=torch.float16)
def initialize_pipeline(model_id):
scheduler = DDIMScheduler.from_pretrained(model_id, subfolder="scheduler", clip_sample=False, timestep_spacing="linspace", beta_schedule="linear", steps_offset=1)
controlnet = ControlNetModel.from_pretrained("thibaud/controlnet-openpose-sdxl-1.0", torch_dtype=torch.float16).to("cuda")
# 初始化 AnimateDiffSDXLControlnetPipeline
pipe = AnimateDiffSDXLControlnetPipeline.from_pretrained(
model_id,
controlnet=controlnet,
motion_adapter=adapter,
scheduler=scheduler,
torch_dtype=torch.float16,
).to("cuda")
pipe.enable_vae_slicing()
pipe.enable_vae_tiling()
return pipe
# 全局初始化管道
pipe = None
def split_video_into_frames(input_video_path, num_frames, temp_folder='temp_frames'):
"""
将视频处理成指定帧数的视频,并保持原始的帧率。
:param input_video_path: 输入视频文件路径
:param num_frames: 目标帧数
:param temp_folder: 临时文件夹路径
"""
clip = VideoFileClip(input_video_path)
original_duration = clip.duration
segment_duration = original_duration / num_frames
if not os.path.exists(temp_folder):
os.makedirs(temp_folder)
for i in range(num_frames):
frame_time = i * segment_duration
frame_path = os.path.join(temp_folder, f'frame_{i:04d}.png')
clip.save_frame(frame_path, t=frame_time)
frame_paths = [os.path.join(temp_folder, f'frame_{i:04d}.png') for i in range(num_frames)]
final_clip = ImageSequenceClip(frame_paths, fps=clip.fps)
final_clip.write_videofile("resampled_video.mp4", codec='libx264')
print(f"新的视频已保存到 resampled_video.mp4,包含 {num_frames} 个帧,并保持原始的帧率。")
def generate_video_with_prompt(input_video_path, prompt, model_id, gif_output_path, seed=0, num_frames=16, keep_imgs=False, temp_folder='temp_frames', num_inference_steps=50, guidance_scale=20, controlnet_conditioning_scale=0.5, width=512, height=768):
"""
生成带有文本提示的视频。
:param input_video_path: 输入视频文件路径
:param prompt: 文本提示
:param model_id: 模型ID
:param gif_output_path: GIF 输出文件路径
:param seed: 随机种子
:param num_frames: 目标帧数
:param keep_imgs: 是否保留临时图片
:param temp_folder: 临时文件夹路径
:param num_inference_steps: 推理步数
:param guidance_scale: 引导比例
:param controlnet_conditioning_scale: ControlNet 条件比例
:param width: 输出宽度
:param height: 输出高度
"""
split_video_into_frames(input_video_path, num_frames, temp_folder)
folder_path = temp_folder
frames = os.listdir(folder_path)
frames = list(filter(lambda x: x.endswith(".png"), frames))
frames.sort()
conditioning_frames = list(map(lambda x: Image.open(os.path.join(folder_path, x)).resize((1024, 1024)), frames))[:num_frames]
p2 = Processor("openpose")
cn2 = [p2(frame) for frame in conditioning_frames]
negative_prompt = "bad quality, worst quality, jpeg artifacts, ugly"
generator = torch.Generator(device="cuda").manual_seed(seed)
global pipe
if pipe is None:
pipe = initialize_pipeline(model_id)
output = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
controlnet_conditioning_scale=controlnet_conditioning_scale,
width=width,
height=height,
num_frames=num_frames,
conditioning_frames=cn2,
generator=generator
)
frames = output.frames[0]
export_to_gif(frames, gif_output_path)
print(f"生成的 GIF 已保存到 {gif_output_path}")
if not keep_imgs:
# 删除临时文件夹
import shutil
shutil.rmtree(temp_folder)
def sanitize_prompt(prompt):
"""
将提示词中的空格和非英文字符替换为下划线。
"""
return "".join([c if c.isalnum() or c in [",", ","] else '_' for c in prompt])
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="生成带有文本提示的视频")
parser.add_argument("csv_file", help="CSV 文件路径")
parser.add_argument("model_id", help="模型ID")
parser.add_argument("output_dir", help="GIF 输出目录")
parser.add_argument("--seed", type=int, default=0, help="随机种子")
parser.add_argument("--num_frames", type=int, default=16, help="目标帧数")
parser.add_argument("--keep_imgs", action="store_true", help="是否保留临时图片")
parser.add_argument("--temp_folder", default='temp_frames', help="临时文件夹路径")
parser.add_argument("--num_inference_steps", type=int, default=50, help="推理步数")
parser.add_argument("--guidance_scale", type=float, default=20.0, help="引导比例")
parser.add_argument("--controlnet_conditioning_scale", type=float, default=0.5, help="ControlNet 条件比例")
parser.add_argument("--width", type=int, default=512, help="输出宽度")
parser.add_argument("--height", type=int, default=768, help="输出高度")
args = parser.parse_args()
# 读取CSV文件
df = pd.read_csv(args.csv_file)
for index, row in tqdm(df.iterrows(), total=df.shape[0]):
input_video = row['input_video']
prompt = row['prompt']
# 随机设定seed
seed = random.randint(0, 2**32 - 1)
# 处理提示词
sanitized_prompt = sanitize_prompt(prompt)
# 生成GIF输出路径,包含seed
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
gif_output_path = os.path.join(args.output_dir, f"{sanitized_prompt}_seed_{seed}.gif")
generate_video_with_prompt(input_video, prompt, args.model_id, gif_output_path, seed, args.num_frames,
args.keep_imgs, args.temp_folder, args.num_inference_steps, args.guidance_scale,
args.controlnet_conditioning_scale, args.width, args.height)